Displaying 1 publication

Abstract:
Sort:
  1. Suhaili Z, Rafee P', Mat Azis N, Yeo CC, Nordin SA, Abdul Rahim AR, et al.
    Germs, 2018 Mar;8(1):21-30.
    PMID: 29564245 DOI: 10.18683/germs.2018.1129
    Introduction: This study aims to assess the antimicrobial susceptibility profiles ofStaphylococcus aureusstrains isolated from university students and to determine the prevalence of constitutive and inducible clindamycin resistance, the latter being able to cause therapeutic failure due to false in vitro clindamycin susceptibility.

    Methods: S. aureus
    strains were isolated from the nasal swabs of 200 health sciences students of a Malaysian university. Twelve classes of antibiotics were used to evaluate the antimicrobial susceptibility profiles with the macrolide-lincosamide-streptogramin B (MLSB) phenotype for inducible clindamycin resistance determined by the double-diffusion test (D-test). Carriage of resistance and virulence genes was performed by PCR onS. aureusisolates that were methicillin resistant, erythromycin resistant and/or positive for the leukocidin gene,pvl(n=15).

    Results: Forty-nine isolates were viable and identified asS. aureuswith four of the isolates characterized as methicillin-resistantS. aureus(MRSA; 2.0%). All isolates were susceptible to the antibiotics tested except for penicillin (resistance rate of 49%), erythromycin (16%), oxacillin (8%), cefoxitin (8%) and clindamycin (4%). Of the eight erythromycin-resistant isolates, iMLSBwas identified in five isolates (three of which were also MRSA). The majority of the erythromycin-resistant isolates harbored themsrAgene (four iMLSB) with the remaining iMLSBisolate harboring theermCgene.

    Conclusion: The presence of MRSA isolates which are also iMLSBin healthy individuals suggests that nasal carriage may play a role as a potential reservoir for the transmission of these pathogens.

    Matched MeSH terms: Streptogramin B
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links