Displaying all 5 publications

Abstract:
Sort:
  1. Lajis AFB
    Medicina (Kaunas), 2018 May 25;54(3).
    PMID: 30344266 DOI: 10.3390/medicina54030035
    For years, clinical studies involving human volunteers and several known pre-clinical in vivo models (i.e., mice, guinea pigs) have demonstrated their reliability in evaluating the effectiveness of a number of depigmenting agents. Although these models have great advantages, they also suffer from several drawbacks, especially involving ethical issues regarding experimentation. At present, a new depigmenting model using zebrafish has been proposed and demonstrated. The application of this model for screening and studying the depigmenting activity of many bioactive compounds has been given great attention in genetics, medicinal chemistry and even the cosmetic industry. Depigmenting studies using this model have been recognized as noteworthy approaches to investigating the antimelanogenic activity of bioactive compounds in vivo. This article details the current knowledge of zebrafish pigmentation and its reliability as a model for the screening and development of depigmenting agents. Several methods to quantify the antimelanogenic activity of bioactive compounds in this model, such as phenotype-based screening, melanin content, tyrosinase inhibitory activity, other related proteins and transcription genes, are reviewed. Depigmenting activity of several bioactive compounds which have been reported towards this model are compared in terms of their molecular structure and possible mode of actions. This includes patented materials with regard to the application of zebrafish as a depigmenting model, in order to give an insight of its intellectual value. At the end of this article, some limitations are highlighted and several recommendations are suggested for improvement of future studies.
    Matched MeSH terms: Skin Lightening Preparations/pharmacology*
  2. Lajis AF, Hamid M, Ariff AB
    J Biomed Biotechnol, 2012;2012:952452.
    PMID: 23091364 DOI: 10.1155/2012/952452
    The depigmenting effect of kojic acid esters synthesized by the esterification of kojic acid using Rhizomucor miehei immobilized lipase was investigated in B16F1 melanoma cells. The depigmenting effect of kojic acid and kojic acid esters was evaluated by the inhibitory effect of melanin formation and tyrosinase activity on alpha-stimulating hormone- (α-MSH-) induced melanin synthesis in B16F1 melanoma cells. The cellular tyrosinase inhibitory effect of kojic acid monooleate, kojic acid monolaurate, and kojic acid monopalmitate was found similar to kojic acid at nontoxic doses ranging from 1.95 to 62.5 μg/mL. However, kojic acid monopalmitate gave slightly higher inhibition to melanin formation compared to other inhibitors at doses ranging from 15.63 to 62.5 μg/mL. Kojic acid and kojic acid esters also show antioxidant activity that will enhance the depigmenting effect. The cytotoxicity of kojic acid esters in B16F1 melanoma cells was significantly lower than kojic acid at high doses, ranging from 125 and 500 μg/mL. Since kojic acid esters have lower cytotoxic effect than kojic acid, it is suggested that kojic acid esters can be used as alternatives for a safe skin whitening agent and potential depigmenting agents to treat hyperpigmentation.
    Matched MeSH terms: Skin Lightening Preparations/pharmacology*
  3. Lajis AFB, Ariff AB
    J Cosmet Dermatol, 2019 Jun;18(3):703-727.
    PMID: 30866156 DOI: 10.1111/jocd.12900
    Human skin pigmentation is a result of constitutive and facultative pigmentation. Facultative pigmentation is frequently stimulated by UV radiation, pharmacologic drugs, and hormones whereby leads to the development of abnormal skin hyperpigmentation. To date, many state-of-art depigmenting compounds have been studied using in vitro model to treat hyperpigmentation problems for cosmetic dermatological applications; little attention has been made to compare the effectiveness of these depigmenting compounds and their mode of actions. In this present article, new and recent depigmenting compounds, their melanogenic pathway targets, and modes of action are reviewed. This article compares the effectiveness of these new depigmenting compounds to modulate several melanogenesis-regulatory enzymes and proteins such as tyrosinase (TYR), TYR-related protein-1 (TRP1), TYR-related protein-2 (TRP2), microphthalmia-associated transcription factor (MITF), extracellular signal-regulated kinase (ERK) and N-terminal kinases (JNK) and mitogen-activated protein kinase p38 (p38 MAPK). Other evidences from in vitro assays such as inhibition on melanosomal transfer, proteasomes, nitric oxide, and inflammation-induced melanogenesis are also highlighted. This article also reviews analytical techniques in different assays performed using in vitro model as well as their advantages and limitations. This article also provides an insight on recent finding and re-examination of some protocols as well as their effectiveness and reliability in the evaluation of depigmenting compounds. Evidence and support from related patents are also incorporated in this present article to give an overview on current patented technology, latest trends, and intellectual values of some depigmenting compounds and protocols, which are rarely highlighted in the literatures.
    Matched MeSH terms: Skin Lightening Preparations/pharmacology*
  4. Karim AA, Azlan A, Ismail A, Hashim P, Abd Gani SS, Zainudin BH, et al.
    BMC Complement Altern Med, 2014 Oct 07;14:381.
    PMID: 25292439 DOI: 10.1186/1472-6882-14-381
    BACKGROUND: Cocoa pod is an outer part of cocoa fruits being discarded during cocoa bean processing. Authors found out that data on its usage in literature as cosmetic materials was not recorded in vast. In this study, cocoa pod extract was investigated for its potential as a cosmetic ingredient.

    METHODS: Cocoa pod extract (CPE) composition was accomplished using UHPLC. The antioxidant capacity were measured using scavenging assay of 1,2-diphenyl-2-picrylhydrazyl (DPPH), β-carotene bleaching assay (BCB) and ferric reducing antioxidant power (FRAP). Inhibiting effect on skin degradation enzymes was carried out using elastase and collagenase assays. The skin whitening effect of CPE was determined based on mushroom tyrosinase assay and sun screening effect (UV-absorbance at 200-400 nm wavelength).

    RESULTS: LC-MS/MS data showed the presence of carboxylic acid, phenolic acid, fatty acid, flavonoids (flavonol and flavones), stilbenoids and terpenoids in CPE. Results for antioxidant activity exhibited that CPE possessed good antioxidant activity, based on the mechanism of the assays compared with ascorbic acid (AA) and standardized pine bark extract (PBE); DPPH: AA > CPE > PBE; FRAP: PBE > CPE > AA; and BCB: BHT > CPE > PBE. Cocoa pod extract showed better action against elastase and collagenase enzymes in comparison with PBE and AA. Higher inhibition towards tyrosinase enzyme was exhibited by CPE than kojic acid and AA, although lower than PBE. CPE induced proliferation when tested on human fibroblast cell at low concentration. CPE also exhibited a potential as UVB sunscreen despite its low performance as a UVA sunscreen agent.

    CONCLUSIONS: Therefore, the CPE has high potential as a cosmetic ingredient due to its anti-wrinkle, skin whitening, and sunscreen effects.

    Matched MeSH terms: Skin Lightening Preparations/pharmacology
  5. Thiyagarasaiyar K, Goh BH, Jeon YJ, Yow YY
    Mar Drugs, 2020 Jun 19;18(6).
    PMID: 32575468 DOI: 10.3390/md18060323
    Cosmetics are widely used by people around the world to protect the skin from external stimuli. Consumer preference towards natural cosmetic products has increased as the synthetic cosmetic products caused adverse side effects and resulted in low absorption rate due to the chemicals' larger molecular size. The cosmetic industry uses the term "cosmeceutical", referring to a cosmetic product that is claimed to have medicinal or drug-like benefits. Marine algae have gained tremendous attention in cosmeceuticals. They are one of the richest marine resources considered safe and possessed negligible cytotoxicity effects on humans. Marine algae are rich in bioactive substances that have shown to exhibit strong benefits to the skin, particularly in overcoming rashes, pigmentation, aging, and cancer. The current review provides a detailed survey of the literature on cosmeceutical potentials and applications of algae as skin whitening, anti-aging, anticancer, antioxidant, anti-inflammation, and antimicrobial agents. The biological functions of algae and the underlying mechanisms of all these activities are included in this review. In addition, the challenges of using algae in cosmeceutical applications, such as the effectiveness of different extraction methods and processing, quality assurance, and regulations concerning extracts of algae in this sector were also discussed.
    Matched MeSH terms: Skin Lightening Preparations/pharmacology
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links