Displaying publications 1 - 20 of 58 in total

Abstract:
Sort:
  1. Phansri W, Ow-Yang CK, Lai PF, Greer GJ
    PMID: 6535267
    Matched MeSH terms: Schistosoma/ultrastructure*; Schistosoma japonicum/ultrastructure
  2. Woodruff DS, Merenlender AM, Upatham ES, Viyanant V
    Am J Trop Med Hyg, 1987 Mar;36(2):345-54.
    PMID: 3826494
    Electrophoretically-detected allozyme variation is described in strains of Schistosoma japonicum (4 Philippine strains), S. mekongi (Laos), and an undescribed anthropophilic S. japonicum-like schistosome from Peninsular Malaysia. Result, together with those reported previously for 8 other strains (S. japonicum, China, Formosa, Japan, Philippines; S. mekongi, 2 substrains; Malaysian schistosome, 2 strains) permit a composite genetic characterization of 15 strains of Asian schistosomes at 9-18 presumptive loci. The proportion of polymorphic loci (P) and the mean heterozygosity per locus (H) were zero in all strains. Although this was expected for strains that had been in laboratory culture for up to 50 years, we expected to detect variation in strains based on 10-50 recently field-collected infected snails. We expected S. japonicum to be as variable as S. mansoni (P = 0.13 (0-0.33), H = 0.04, 18 loci, 22 strains) as it is believed to reproduce sexually, has an evolutionary history of several million years, inhabits a wide geographic range, coevolved with a genetically variable intermediate snail host, and has a diversity of mammalian hosts. No differences were detected between the 5 S. japonicum strains from Leyte and Luzon (Philippines), between the 3 S. mekongi strains, or between the 3 Malaysian schistosome strains; these groups and the remaining S. japonicum strains representing Mindoro (Philippines), China, Formosa, and Japan each have distinctive multilocus electromorphic patterns. Nei's genetic distances (D) were calculated to estimate interstrain and interspecific divergence. Interstrain genetic distances in S. japonicum averaged greater than 0.3; much higher than those reported previously for S. mansoni (D = 0.06, D(max) = 0.24). S. japonicum (Mindoro) was moderately differentiated from the Leyte-Luzon strains (D = 0.29, 12 loci). Estimates of the S. japonicum China-Philippine distance (D greater than 0.4, 11 loci) are high for conspecific populations and further studies of the still poorly characterized Chinese parasite may reveal that these are, in fact, separate species. S. japonicum is shown to be only distantly related to S. mekongi and the Malaysian schistosome (D greater than 1); the latter is closely related to, but genetically quite distinct from, S. mekongi (D = 0.61 +/- 0.275, 11 loci) and warrants recognition as a new species. The medical significance of the isogenic nature of the Asian schistosome strains and their evolutionary divergence are discussed.
    Matched MeSH terms: Schistosoma/genetics*; Schistosoma japonicum/genetics*; Schistosoma mansoni/genetics
  3. Basch PF
    Z Parasitenkd, 1966;27(3):242-51.
    PMID: 5990057
    Matched MeSH terms: Schistosoma/growth & development*
  4. Greer GJ, Ow-Yang CK, Yong HS
    J Parasitol, 1988 Jun;74(3):471-80.
    PMID: 3379527
    Schistosoma malayensis n. sp., a member of the Schistosoma japonicum complex is described from Rattus muelleri in Peninsular Malaysia and 2 strains are characterized. The only morphological differences noted among adults from natural hosts were that S. malayensis are in general smaller than S. mekongi and S. japonicum. But these differences may be the result of host-induced variations and therefore are of little taxonomic value. To minimize the effects of host-induced variations, adult worms recovered from laboratory mice with similar worm burdens at 50-56 days postinfection were compared. These comparisons revealed only minor morphometric differences among these 3 species. Schistosoma malayensis eggs from naturally and experimentally infected hosts are most similar to those of S. mekongi, with eggs of both species being, in general, smaller than those of S. japonicum. The egg index for S. malayensis is usually higher than for S. japonicum and lower than for S. mekongi. Differences were noted in the developmental rates in mice for 2 isolates of S. malayensis, S. mekongi, and S. japonicum (Philippine strain), but relatively large differences observed between isolates of S. malayensis indicate that, in this case, the developmental rate is not a useful taxonomic character. Schistosoma malayensis is erected principally on the basis of differences, reported elsewhere, in the life histories and in the electrophoretic migration patterns of isoenzymes of adult worms as compared to S. mekongi and S. japonicum. These comparisons indicate that S. malayensis is more closely related to S. mekongi than to S. japonicum.
    Matched MeSH terms: Schistosoma/anatomy & histology*; Schistosoma/classification; Schistosoma/genetics; Schistosoma/isolation & purification; Schistosoma japonicum/anatomy & histology*; Schistosoma japonicum/classification; Schistosoma japonicum/genetics; Schistosoma japonicum/isolation & purification
  5. Yuan HC, Upatham ES, Kruatrachue M, Khunborivan V
    PMID: 6740384
    Laboratory experiments were carried out to study the susceptibility of snail vectors to Oriental anthropophilic Schistosoma. Oncomelania hupensis hupensis was readily infected with the local strain of Schistosoma japonicum (Chinese strain), and also infected with S. japonicum (Philippines strain). O.h. quadrasi was only susceptible to its S. japonicum (Philippines strain). The Oncomelania races were refractory to S. mekongi, S. japonicum-like species (Malaysian strain). Tricula aperta (beta race) was readily infected with S. mekongi, S. sinensium and S. japonicum-like species from Malaysia, but not S. japonicum. T. bollingi was susceptible to S. sinensium and S. mekongi. Robertsiella kaporensis was only susceptible to the local strain, S. japonicum-like species from Malaysia. Geographical isolation may be the cause of these differences in compatibility between the snail vectors and the schistosome parasites.
    Matched MeSH terms: Schistosoma/physiology*; Schistosoma japonicum/physiology*
  6. Sornmani S
    Med J Malaya, 1968 Mar;22(3):232.
    PMID: 4234368
    Matched MeSH terms: Schistosoma*; Schistosomiasis/blood; Schistosomiasis/metabolism
  7. Gauffre-Autelin P, von Rintelen T, Stelbrink B, Albrecht C
    Parasit Vectors, 2017 03 06;10(1):126.
    PMID: 28264699 DOI: 10.1186/s13071-017-2043-6
    BACKGROUND: The planorbid snail Indoplanorbis exustus is the sole intermediate host for the Schistosoma indicum species group, trematode parasites responsible for cattle schistosomiasis and human cercarial dermatitis. This freshwater snail is widely distributed in Southern Asia, ranging from Iran to China eastwards including India and from the southeastern Himalayas to Southeast Asia southwards. The veterinary and medical importance of this snail explains the interest in understanding its geographical distribution patterns and evolutionary history. In this study, we used a large and comprehensive sampling throughout Indo-Malaya, including specimens from South India and Indonesia, areas that have been formerly less studied.

    RESULTS: The phylogenetic inference revealed five highly divergent clades (genetic distances among clades: 4.4-13.9%) that are morphologically indistinguishable, supporting the assumption that this presumed nominal species may represent a cryptic species complex. The species group may have originated in the humid subtropical plains of Nepal or in southern adjacent regions in the Early Miocene. The major cladogenetic events leading to the fives clades occurred successively from the Early Miocene to the Early Pleistocene, coinciding with major periods of monsoonal intensification associated with major regional paleogeographic events in the Miocene and repeated climate changes due to the Plio-Pleistocene climatic oscillations. Our coverage of the Indo-Australian Archipelago (IAA) highlights the presence of a single clade there. Contrary to expectations, an AMOVA did not reveal any population genetic structure among islands or along a widely recognised zoogeographical regional barrier, suggesting a recent colonisation independent of natural biogeographical constraints. Neutrality tests and mismatch distributions suggested a sudden demographic and spatial population expansion that could have occurred naturally in the Pleistocene or may possibly result of a modern colonisation triggered by anthropogenic activities.

    CONCLUSIONS: Even though Indoplanorbis is the main focus of this study, our findings may also have important implications for fully understanding its role in hosting digenetic trematodes. The existence of a cryptic species complex, the historical phylogeographical patterns and the recent range expansion in the IAA provide meaningful insights to the understanding and monitoring of the parasites potential spread. It brings a substantial contribution to veterinary and public health issues.

    Matched MeSH terms: Schistosoma/classification; Schistosoma/physiology*
  8. Chuah C, Gobert GN, Latif B, Heo CC, Leow CY
    Acta Trop, 2019 Feb;190:137-143.
    PMID: 30448471 DOI: 10.1016/j.actatropica.2018.11.012
    Schistosomiasis, a neglected tropical parasitic disease caused by the trematode flatworms of the genus Schistosoma, affects approximately 207 million people worldwide. Among the five main species infecting humans, Schistosoma mansoni and S. japonicum are responsible for the majority of hepatointestinal schistosomiasis. Human settlements near fresh water sites that lack proper sanitary systems often contribute to the transmission of disease. This risk particularly impacts on travellers or immigrants who come into contact with larvae-contaminated water. This review discusses the central features of schistosomiasis; including clinical manifestations, diagnosis, treatments, and the preventive measures available for the control of this disease. The description of the Malaysian schistosome species Schistosoma malayensis and the current status of schistosomiasis in Malaysia including the compilation of cases diagnosed from 1904 to 2015 are also discussed in this paper.
    Matched MeSH terms: Schistosoma/genetics; Schistosoma/physiology
  9. Ai L, Hu W, Zhang RL, Huang DN, Chen SH, Xu B, et al.
    Trop Biomed, 2020 Dec 01;37(4):947-962.
    PMID: 33612748 DOI: 10.47665/tb.37.4.947
    Different miRNAs are involved in the life cycles of Schistosoma japonicum. The aim of this study was to examine the expression profile of miRNAs in individual S. japonicum of different sex before and after pairing (18 and 24 dpi). The majority of differential expressed miRNAs were highly abundant at 14 dpi, except for sja-miR-125b and sja-miR-3505, in both male and female. Moreover, it was estimated that sja-miR-125b and sja-miR-3505 might be related to laying eggs. sja-miR-2a-5p and sja-miR-3484-5p were expressed at 14 dpi in males and were significantly clustered in DNA topoisomerase III, Rap guanine nucleotide exchange factor 1 and L-serine/L-threonine ammonia-lyase. Target genes of sja-miR-2d-5p, sja-miR-31- 5p and sja-miR-125a, which were expressed at 14 dpi in males but particularly females, were clustered in kelch-like protein 12, fructose-bisphosphate aldolase, class I, and heat shock protein 90 kDa beta. Predicted target genes of sja-miR-3483-3p (expressed at 28 dpi in females but not in males) were clustered in 26S proteasome regulatory subunit N1, ATPdependent RNA helicase DDX17. Predicted target genes of sja-miR-219-5p, which were differentially expressed at 28 dpi in females but particularly males, were clustered in DNA excision repair protein ERCC-6, protein phosphatase 1D, and ATPase family AAA domaincontaining protein 3A/B. Moreover, at 28 dpi, eight miRNAs were significantly up-regulated in females compared to males. The predicted target genes of these miRNAs were significantly clustered in heat shock protein 90 kDa beta, 26S proteasome regulatory subunit N1, and protein arginine N-methyltransferase 1. To sum up, differentially expressed miRNAs may have an essential role and provide necessary information on clarifying this trematode's growth, development, maturation, and infection ability to mammalian hosts in its complex life cycle, and may be helpful for developing new drug targets and vaccine candidates for schistosomiasis.
    Matched MeSH terms: Schistosoma japonicum/genetics*; Schistosoma japonicum/growth & development
  10. Upatham ES, Kruatrachue M, Viyanant V, Khunborivan V, Kunatham L
    PMID: 4023798
    Studies on the bionomics and host-parasite relationship of Robertsiella kaporensis and Malaysian Schistosoma were investigated. The study was divided into 4 parts: cultivation of snails, R. kaporensis, and maintenance of Malaysian Schistosoma life cycle, daily cercarial shedding cycle in R. kaporensis, miracidial load and cercarial shedding pattern and the infectivity of Malaysian Schistosoma cercariae. R. kaporensis were cultured in the laboratory with the use of plastic container provided with fine sand. The snails were fed with diatoms and Saraca leaves. The development period for the snail eggs was about 20-30 days, the young grew to maturity in 14-15 weeks, and the average growth rate of snails was 0.23 mm per week. The daily cercarial shedding cycle of snails had shown that the peak emergence of cercariae of Malaysian Schistosoma occurred at night, between 6-10 pm. The miracidial load which yielded the best results in terms of percentage infection rates of snails and cercarial output was the miracidial concentration of 8 miracidia per snail. The study on infectivity of Malaysian Schistosoma cercariae has shown that there was a decrease in infectivity of the cercariae to mammalian hosts as the cercariae increased in age. The percentage infection rate of mice and numbers of worms recovered were highest in mice infected with cercariae of 0-1/2 hr. old. Infection of cercariae fell rapidly after the cercariae were 16 hr. old.
    Matched MeSH terms: Schistosoma/growth & development; Schistosoma/physiology*
  11. Chuah C, Jones MK, Burke ML, McManus DP, Gobert GN
    Trends Parasitol, 2014 Mar;30(3):141-50.
    PMID: 24433721 DOI: 10.1016/j.pt.2013.12.009
    In hepatic schistosomiasis, pathology arises when schistosome eggs become lodged in the host liver, evoking an interleukin 4 (IL-4)- and IL-13-mediated dominant CD4(+) Th2 immune response. This response leads to the development of granulomas and fibrosis, with eosinophils, neutrophils, macrophages, hepatic stellate cells, and lymphocytes all identified as major cellular contributors to these events. This review outlines the cellular and molecular mechanisms of hepatic schistosomiasis, with an emphasis on the major cellular components and their release of chemokines. The differences between Schistosoma mansoni- and Schistosoma japonicum-induced hepatic granuloma are also discussed. This comprehensive overview of the processes associated with hepatic schistosomiasis may provide new insights into improved treatment for both schistosomiasis and other granulofibrotic diseases.
    Matched MeSH terms: Schistosoma/immunology; Schistosoma japonicum/immunology; Schistosoma mansoni/immunology
  12. Sady H, Al-Mekhlafi HM, Ngui R, Atroosh WM, Al-Delaimy AK, Nasr NA, et al.
    Int J Mol Sci, 2015;16(7):16085-103.
    PMID: 26193254 DOI: 10.3390/ijms160716085
    The present study describes a real-time PCR approach with high resolution melting-curve (HRM) assay developed for the detection and differentiation of Schistosoma mansoni and S. haematobium in fecal and urine samples collected from rural Yemen. The samples were screened by microscopy and PCR for the Schistosoma species infection. A pair of degenerate primers were designed targeting partial regions in the cytochrome oxidase subunit I (cox1) gene of S. mansoni and S. haematobium using real-time PCR-HRM assay. The overall prevalence of schistosomiasis was 31.8%; 23.8% of the participants were infected with S. haematobium and 9.3% were infected with S. mansoni. With regards to the intensity of infections, 22.1% and 77.9% of S. haematobium infections were of heavy and light intensities, respectively. Likewise, 8.1%, 40.5% and 51.4% of S. mansoni infections were of heavy, moderate and light intensities, respectively. The melting points were distinctive for S. mansoni and S. haematobium, categorized by peaks of 76.49 ± 0.25 °C and 75.43 ± 0.26 °C, respectively. HRM analysis showed high detection capability through the amplification of Schistosoma DNA with as low as 0.0001 ng/µL. Significant negative correlations were reported between the real-time PCR-HRM cycle threshold (Ct) values and microscopic egg counts for both S. mansoni in stool and S. haematobium in urine (p < 0.01). In conclusion, this closed-tube HRM protocol provides a potentially powerful screening molecular tool for the detection of S. mansoni and S. haematobium. It is a simple, rapid, accurate, and cost-effective method. Hence, this method is a good alternative approach to probe-based PCR assays.
    Matched MeSH terms: Schistosoma haematobium/genetics; Schistosoma haematobium/isolation & purification*; Schistosoma mansoni/genetics; Schistosoma mansoni/isolation & purification*
  13. Greer GJ, Ow-Yang CK, Singh KI, Lim HK
    Trans R Soc Trop Med Hyg, 1980;74(3):425.
    PMID: 7434446
    Matched MeSH terms: Schistosoma japonicum*
  14. Stroehlein AJ, Korhonen PK, Chong TM, Lim YL, Chan KG, Webster B, et al.
    Gigascience, 2019 Sep 01;8(9).
    PMID: 31494670 DOI: 10.1093/gigascience/giz108
    BACKGROUND: Schistosoma haematobium causes urogenital schistosomiasis, a neglected tropical disease affecting >100 million people worldwide. Chronic infection with this parasitic trematode can lead to urogenital conditions including female genital schistosomiasis and bladder cancer. At the molecular level, little is known about this blood fluke and the pathogenesis of the disease that it causes. To support molecular studies of this carcinogenic worm, we reported a draft genome for S. haematobium in 2012. Although a useful resource, its utility has been somewhat limited by its fragmentation.

    FINDINGS: Here, we systematically enhanced the draft genome of S. haematobium using a single-molecule and long-range DNA-sequencing approach. We achieved a major improvement in the accuracy and contiguity of the genome assembly, making it superior or comparable to assemblies for other schistosome species. We transferred curated gene models to this assembly and, using enhanced gene annotation pipelines, inferred a gene set with as many or more complete gene models as those of other well-studied schistosomes. Using conserved, single-copy orthologs, we assessed the phylogenetic position of S. haematobium in relation to other parasitic flatworms for which draft genomes were available.

    CONCLUSIONS: We report a substantially enhanced genomic resource that represents a solid foundation for molecular research on S. haematobium and is poised to better underpin population and functional genomic investigations and to accelerate the search for new disease interventions.

    Matched MeSH terms: Schistosoma haematobium/genetics*
  15. Shekhar KC, Pathmanathan R
    PMID: 1298078
    Two distinct strains of Schistosoma malayensis exist in Malaysia (designated the Baling and Koyan strains). Both these strains show intraspecific variations in pathology (Greer et al, 1988). To evaluate the differences in the pulmonary pathology resulting from infections of the two different strains of Malaysian schistosome, a total of 20 experimental rabbits were infected, 10 each with cercariae of the Koyan strains. Pathological changes were studied over a period of 28 weeks. Granulomas in the lung occurring as a result of infection with the Baling strain were compared with those caused by infection with the Koyan strain. Although both strains produced parenchymatous and alveolar lesions, granulomas caused by the Baling strain of Malaysian schistosome were more numerous and larger (when comparing mean diameter as well as area of granuloma, p < 0.05). In addition, pulmonary vascular hypertensive changes were present in Baling strain infected rabbits. These comprised of pulmonary arteriolar endothelial swelling and damage, intimal elastosis and medial hypertrophy. Angiitis and pulmonary periphlebitis were also noted occasionally. In contrast, Koyan strain infection resulted in fewer and smaller granulomas. Pulmonary vascular changes were minimal.
    Matched MeSH terms: Schistosoma/classification*
  16. Bayssade-Dufour C, Ow-Yang CK
    PMID: 1221503
    A description of sensory receptors of Trichobilharzia brevis is given. They are compared with the five Schistosomatidae described by Richard (1971), namely, Trichobilharzia ocellata, schistosoma mansoni, S. bovis, S; haematobium and S. rodhaini. All these species display very similar chaetotaxic characters. In the study of the cercaria of Haplorchis pumilio, comparison with the few Opisthorchioidea cercarial sensory organs already known has enabled the authors to characterise the chaetotaxy for this superfamily.
    Matched MeSH terms: Schistosoma/anatomy & histology*
  17. Shekhar KC, Pathmanathan R
    PMID: 8266238
    Two groups of three rabbits each were infected with 250 cercariae of the Baling and Koyan strain of Schistosoma malayensis. Changes induced by both strains included periportal hepatocellular necrosis and fibrosis. Vascular changes such as portal phlebitis and thrombophlebitis and varying degrees of pericholangitis were also present. Amyloid deposition was noted. A comparative study of the changes induced in rabbits by S. malayensis, S. mekongi and S. japonicum showed that the hepatic lesions induced by the Baling strain of S. malayensis were similar to that induced by S. japonicum, and were more severe than that induced by S. mekongi or the Koyan strain.
    Matched MeSH terms: Schistosoma/pathogenicity*; Schistosoma japonicum/pathogenicity
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links