Displaying publications 1 - 20 of 189 in total

Abstract:
Sort:
  1. Liu A, Chai X, Zhu S, Chin PT, He M, Xu YJ, et al.
    Int J Biol Macromol, 2023 Jul 31;244:125311.
    PMID: 37302627 DOI: 10.1016/j.ijbiomac.2023.125311
    Astaxanthin (AST) has outstanding antioxidant and anti-inflammation bioactivities, but the low biocompatibility and stability limit its application in foods. In this study, N-succinyl-chitosan (NSC)-coated AST polyethylene glycol (PEG)-liposomes were constructed to enhance the biocompatibility, stability, and intestinal-targeted migration of AST. The AST NSC/PEG-liposomes were uniform in size, had larger particles, greater encapsulation efficiency, and better storage, pH, and temperature stability than the AST PEG-liposomes. AST NSC/PEG-liposomes exerted stronger antibacterial and antioxidant activities against Escherichia coli and Staphylococcus aureus than AST PEG-liposomes. The NSC coating not only protects AST PEG-liposomes from gastric acid but also prolongs the retention and sustained release of AST NSC/PEG-liposomes depending on the intestinal pH. Moreover, caco-2 cellular uptake studies showed that AST NSC/PEG-liposomes had higher cellular uptake efficiency than AST PEG-liposomes. And AST NSC/PEG-liposomes were taken up by caco-2 cells through clathrin mediated endocytic, macrophage pathways and paracellular transport pathway. These results further proved that AST NSC/PEG-liposomes delayed the release and promoted the intestinal absorption of AST. Hence, AST PEG-liposomes coated with NSC could potentially be used as an efficient delivery system for therapeutic AST.
    Matched MeSH terms: Polyethylene Glycols/chemistry
  2. Gew LT, Misran M
    J Biol Phys, 2017 Sep;43(3):397-414.
    PMID: 28752254 DOI: 10.1007/s10867-017-9459-2
    In this study, we address the effect of the cis-double bond in 1,2-dioleoyl-sn-glycero-3-phosphoethanolamide-N-[methoxy(polyethylene glycol)-2000, DOPE PEG2000 (DP), on the Langmuir monolayer of C18 fatty acids-namely, stearic acid (SA), oleic acid (L1), linoleic acid (L2), and linolenic acid (L3)-with the same head group but different degrees of saturation on their hydrocarbon chains. Negative values of Gibbs free energy of mixing (ΔG mix) were obtained throughout the investigated ranges of the unsaturated C18 fatty-acid (L1, L2 and L3) mixed systems, indicating that very strong attractions occurred between molecules in the monolayers. The bend and kink effects from the cis-double bond(s) in the hydrocarbon chain affected the membrane fluidity and molecular packing in the monolayers, which resulted in a greater interaction between unsaturated C18 fatty acids and DP. The most thermodynamically stable mole composition of unsaturated C18 fatty acids to DP was observed at 50:1; this ratio is suggested to be the best mole ratio and will be subsequently used to prepare DP-C18 fatty-acid nanoliposomes. The presence of cis-double bonds in both hydrocarbon chains of DOPE in DP also created an imperfection in the membrane structure of lipid-drug delivery systems, which is expected to enhance lipid-based systems for antibody conjugation and drug encapsulation.
    Matched MeSH terms: Polyethylene Glycols/chemistry*
  3. Ng HS, Kee PE, Tan GY, Yim HS, Lan JC
    Appl Biochem Biotechnol, 2020 May;191(1):273-283.
    PMID: 32335865 DOI: 10.1007/s12010-020-03284-z
    Garcinia mangostana pericarp is a good source of natural antioxidants with numerous functional properties. The conventional approaches for the recovery of antioxidants from Garcinia mangostana pericarp require long processing time and high temperature, which may cause degradation or loss of bioactivity of antioxidants, and often result in low recovery efficiency. In this study, the extraction of antioxidants from Garcinia mangostana pericarp was investigated using a polyethylene glycol (PEG)/citrate aqueous biphasic system (ABS) with the addition of surfactants. The optimum condition for the recovery of antioxidants was achieved in PEG 1000/citrate ABS of pH 8 with tie-line length (TLL) of 48.3% (w/w), volume ratio (VR) of 1.6, 0.2% (w/w) sample loading and addition of 1.0% (w/w) Tween 85. The antioxidants were recovered in the PEG-rich top phase with a high K value of 18.23 ± 0.33 and a recovery yield of 92.01% ± 0.09. The findings suggested that the addition of surfactants to polymer/salt ABS can enhance the recovery of antioxidants from Garcinia mangostana pericarps by conserving the antioxidative properties.
    Matched MeSH terms: Polyethylene Glycols/chemistry*
  4. Ng ZJ, Abbasiliasi S, Yew Joon T, Ng HS, Phapugrangkul P, Tan JS
    Prep Biochem Biotechnol, 2023;53(7):872-879.
    PMID: 36594706 DOI: 10.1080/10826068.2022.2158468
    In this work, porous glass beads grafted with polyethylene glycol (PEG) were used as an adsorbent to purify lipase from Burkholderia metallica in column chromatography. The purification parameters viz. salt stability, types and concentrations of PEG and salt, pH of the binding solution, and flow rate were studied to determine the performance of the purification system in an XK16/20 column. The crude lipase was mixed with different types and concentrations of salts 1-5% (w/w) (sodium citrate, potassium citrate, and sodium acetate) and subjected to the column containing the polymeric glass bead. One-variable-at-a-time experimentation revealed that 20% (w/w) PEG 6000 g/mol impregnated glass beads with a binding solution of 5% sodium citrate at pH 7.7, a flow rate of 1.0 mL/min and extraction time of 10 min resulted in the highest purification factor and recovery yield at 3.67 and 88%, respectively. The purified lipase has 55 ∼ 60 kDa molecular mass. The outcome of the study showed PEG could be applied to modify the inert glass beads into polymeric form, providing a biocompatible and mild separation condition for lipase. Thus, PEG could be successfully applied for the purification of lipase from B. metallica fermentation broth using column chromatography.
    Matched MeSH terms: Polyethylene Glycols/chemistry
  5. Gorajana A, Kit WW, Dua K
    Recent Pat Drug Deliv Formul, 2015;9(2):167-82.
    PMID: 25714525
    OBJECTIVE: Norfloxacin has a low aqueous solubility which leads to poor dissolution. Keeping this fact in mind the purpose of the present study is to formulate and evaluate norfloxacin solid dispersion.

    METHODS: Solid dispersions were prepared using hydrophilic carriers like polyethylene glycol (PEG) 4000, polyvinylpyrrolidone (PVP) k30 and carbopol 974pNF (CP) in various ratios using solvent evaporation technique. These formulations were evaluated using solubility studies, dissolution studies; Fourier transmitted infrared spectroscopy (FTIR), X-ray diffraction (XRD), and differential scanning calorimetery (DSC). The influence of polymer type and drug to polymer ratio on the solubility and dissolution rate of norfloxacin was also evaluated.

    RESULTS: FTIR analysis showed no interaction of all three polymers with norfloxacin. The results from XRD and DSC analyses of the solid dispersion preparations showed that norfloxacin existsin its amorphous form. Among the Norfloxacin: PEG solid dispersions, Norfloxacin: PEG 1:14 ratio showed the highest dissolution rate at pH 6.8. For norfloxacin: PVP solid dispersions, norfloxacin: PVP 1:10 ratio showed the highest dissolution rate at pH 6.8. For Norfloxacin: CP solid dispersions, norfloxacin: P 1:2 ratio showed the highest dissolution rate at pH 6.8.

    CONCLUSION: The solid dispersion of norfloxacin with polyethylene glycol (PEG) 4000, polyvinylpyrrolidone (PVP) k30 and carbopol 974p NF (CP), lends an ample credence for better therapeutic efficacy.

    Matched MeSH terms: Polyethylene Glycols/pharmacokinetics; Polyethylene Glycols/chemistry*
  6. Saleh MI, Kusrini E, Mohd Sarjidan MA, Abd Majid WH
    PMID: 21030294 DOI: 10.1016/j.saa.2010.08.029
    A mononuclear of [Eu(NO3)(Pic)(H2O)2(EO3)](Pic)·(0.73)H2O complex, where EO3=trietraethylene glycol and Pic=picrate anion, shows a red emission when used as an active layer in a single layer of ITO/EO3-Eu-Pic/Al configuration. The crystal structure of the complex consists of [Eu(NO3)(Pic)(H2O)2(EO3)]+ cation and [Pic]- anion. The Eu(III) ion is coordinated to the 10 oxygen atoms from one EO3 ligand, one Pic anion, one nitrate anion, and two water molecules. The complex is crystallized in triclinic with space group P-1. The hybrids in thin films I and II were prepared in the respective order solution concentrations of 15 and 20 mg/mL the emissive center. Comparing the photoluminescence (PL) and electroluminescence (EL) spectra, we can find that all emissions come from the characteristic transitions of the Eu(III) ion. The EL spectra of both thin films showed the occurrence of the most intense red-light emission around at 612 nm. Comparison of organic light-emitting device (OLED) current intensity characteristics as a function of voltage (I-V) show that the thin film I is better than those found for the thin film II. The thickness of the emitting layer is an important factor to control the current-voltage curve. The sharp and intense emission of the complex at low voltage indicates that the complex is a suitable and promising candidate for red-emitting materials.
    Matched MeSH terms: Polyethylene Glycols/chemical synthesis*; Polyethylene Glycols/chemistry*
  7. Abbasiliasi S, Tan JS, Ibrahim TA, Kadkhodaei S, Ng HS, Vakhshiteh F, et al.
    Food Chem, 2014 May 15;151:93-100.
    PMID: 24423507 DOI: 10.1016/j.foodchem.2013.11.019
    A polymer-salt aqueous two-phase system (ATPS) consisting of polyethylene-glycol (PEG) with sodium citrate was developed for direct recovery of a bacteriocin-like inhibitory substance (BLIS) from a culture of Pediococcus acidilactici Kp10. The influences of phase composition, tie-line length (TLL), volume ratio (VR), crude sample loading, pH and sodium chloride (NaCl) on the partition behaviour of BLIS was investigated. Under optimum conditions of ATPS, the purification of BLIS was achieved at 26.5% PEG (8000)/11% sodium citrate with a TLL of 46.38% (w/w), VR of 1.8, and 1.8% crude load at pH 7 without the presence of NaCl. BLIS from P. acidilactici Kp10 was successfully purified by the ATPS up to 8.43-fold with a yield of 81.18%. Given that the operation of ATPS is simple, environmentally friendly and cost-effective, as it requires only salts and PEG, it may have potential for industrial applications in the recovery of BLIS from fermentation broth.
    Matched MeSH terms: Polyethylene Glycols/chemistry
  8. Ahmad MB, Tay MY, Shameli K, Hussein MZ, Lim JJ
    Int J Mol Sci, 2011;12(8):4872-84.
    PMID: 21954331 DOI: 10.3390/ijms12084872
    This paper presents the green synthesis of silver nanoparticles (Ag NPs) in aqueous medium. This method was performed by reducing AgNO(3) in different stirring times of reaction at a moderate temperature using green agents, chitosan (Cts) and polyethylene glycol (PEG). In this work, silver nitrate (AgNO(3)) was used as the silver precursor while Cts and PEG were used as the solid support and polymeric stabilizer. The properties of Ag/Cts/PEG nanocomposites (NCs) were studied under different stirring times of reaction. The developed Ag/Cts/PEG NCs were then characterized by the ultraviolet-visible (UV-Vis) spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy.
    Matched MeSH terms: Polyethylene Glycols/chemistry*
  9. Ishak KA, Annuar MSM, Ahmad N
    Appl Biochem Biotechnol, 2017 Dec;183(4):1191-1208.
    PMID: 28502064 DOI: 10.1007/s12010-017-2492-6
    Polymeric nanoparticles gain a widespread interest in food and pharmaceutical industries as delivery systems that encapsulate, protect, and release lipophilic compounds such as omega-3 fatty acids, fat-soluble vitamins, carotenoids, carvedilol, cyclosporine, and ketoprofen. In this study, medium-chain-length poly-3-hydroxyalkanoate (mcl-PHA)-incorporated nanoparticle was developed via facile organic solvent-free nanoemulsion templating technique. The water content (W/surfactant-to-oil (S/O)), S/O, and Cremophor EL-to-Span 80 (Cremo/Sp80) ratios were first optimized using response surface methodology (RSM) to obtain nanoemulsion template prior to incorporation of mcl-PHA. Their effects on nanoemulsion formation were investigated. The mcl-PHA-incorporated nanoparticle system showed a good preservation capability of β-carotene and extended storage stability.
    Matched MeSH terms: Polyethylene Glycols/chemistry*
  10. Jamil M, Mustafa IS, Ahmed NM, Sahul Hamid SB
    Biomater Adv, 2022 Dec;143:213178.
    PMID: 36368056 DOI: 10.1016/j.bioadv.2022.213178
    Biocompatible polymers have received significant interest from researchers for their potential in diagnostic applications. This type of polymer can perform with an appropriate host response or carrier for a specific purpose. The current study aims to fabricate and characterise poly(ethylene) oxide (PEO) nanofibres with different concentrations for cytotoxicity evaluation in human breast cancer cell lines (MCF-7) and to get an optimal PEO nanofibre concentration (permissible limit) as a suitable polymer matrix or carrier with potential use in diagnostic applications. The fabrication of PEO nanofibres was done using electrospinning and was characterised by structure and morphology, surface roughness, chemical bonding and release profiles. The functional effects of PEO nanofibres were evaluated with MTS assay and colony formation assay in MCF-7 cells. The results showed that viscosity plays a vital role in synthesising a polymer solution in electrospinning for producing beadless nanofibrous mats ranging from 4.7 Pa·s to 77.7 Pa·s. As the PEO concentration increases, the nanofibre diameter and thickness will increase, but the surface roughness will be decreased. The average fibre diameter for 5 wt% PEO, 6 wt% PEO and 7 wt% PEO nanofibres were 129 ± 70 nm, 185 ± 55 nm and 192 ± 53 nm, respectively. In addition, the fibre thickness for 4 wt% PEO, 5 wt% PEO, 6 wt% PEO and 7 wt% PEO nanofibres were 269 ± 3 μm, 664 ± 4 μm, 758 ± 7 μm and 1329 ± 44 μm, respectively. Contrarily, the surface roughness for 4 wt% PEO, 5 wt% PEO, 6 wt% PEO and 7 wt% PEO nanofibres were 55.6 ± 9 nm, 42.8 ± 6 nm, 42.7 ± 7 nm and 36.6 ± 1 nm, respectively. PEO nanofibres showed the same burst release pattern and rate due to the same molecular weight of PEO with a stable release rate profile after 15 min. It also demonstrates that the percentage of PEO nanofibre release increased with the increasing PEO concentration due to the fibre diameter and thickness. The findings showed that all PEO nanofibres formulations were non-toxic to MCF-7 cells. It is suggested that 5 wt% PEO nanofibre exhibited non-cytotoxic characteristics by maintaining the cell viability from dose 0-1000 μg/ml and did not induce the number of colonies. Therefore, 5 wt% PEO nanofibre is the optimal nanofibre concentration and was suggested as a suitable base polymer matrix or carrier with potential use for diagnostic purposes. The findings in this study have demonstrated the influence of cell growth and viability, including the effects of PEO nanofibre formulations on cancer progress characteristics to achieve a permissible PEO nanofibre concentration limit that can be a benchmark in medical applications, particularly diagnostic applications.
    Matched MeSH terms: Polyethylene Glycols/chemistry
  11. Chen D, Xia X, Wong TW, Bai H, Behl M, Zhao Q, et al.
    Macromol Rapid Commun, 2017 Apr;38(7).
    PMID: 28196300 DOI: 10.1002/marc.201600746
    Device applications of shape memory polymers demand diverse shape changing geometries, which are currently limited to non-omnidirectional movement. This restriction originates from traditional thermomechanical programming methods such as uniaxial, biaxial stretching, bending, or compression. A solvent-modulated programming method is reported to achieve an omnidirectional shape memory behavior. The method utilizes freeze drying of hydrogels of polyethylene glycol networks with a melting transition temperature around 50 °C in their dry state. Such a process creates temporarily fixed macroporosity, which collapses upon heating, leading to significant omnidirectional shrinkage. These shrunken materials can swell in water to form hydrogels again and the omnidirectional programming and recovery can be repeated. The fixity ratio (R f ) and recovery ratio (R r ) can be maintained at 90% and 98% respectively upon shape memory multicycling. The maximum linear recoverable strain, as limited by the maximum swelling, is ≈90%. Amongst various application potentials, one can envision the fabrication of multiphase composites by taking advantages of the omnidirectional shrinkage from a porous polymer to a denser structure.
    Matched MeSH terms: Polyethylene Glycols/chemistry*
  12. Lim SH, Wong TW, Tay WX
    Adv Colloid Interface Sci, 2024 Mar;325:103094.
    PMID: 38359673 DOI: 10.1016/j.cis.2024.103094
    Nanoparticles as cancer therapeutic carrier fail in clinical translation due to complex biological environments in vivo consisting of electrolytes and proteins which render nanoparticle aggregation and unable to reach action site. This review identifies the desirable characteristics of nanoparticles and their constituent materials that prevent aggregation from site of administration (oral, lung, injection) to target site. Oral nanoparticles should ideally be 75-100 nm whereas the size of pulmonary nanoparticles minimally affects their aggregation. Nanoparticles generally should carry excess negative surface charges particularly in fasting state and exert steric hindrance through surface decoration with citrate, anionic surfactants and large polymeric chains (polyethylene glycol and polyvinylpyrrolidone) to prevent aggregation. Anionic as well as cationic nanoparticles are both predisposed to protein corona formation as a function of biological protein isoelectric points. Their nanoparticulate surface composition as such should confer hydrophilicity or steric hindrance to evade protein corona formation or its formation should translate into steric hindrance or surface negative charges to prevent further aggregation. Unexpectedly, smaller and cationic nanoparticles are less prone to aggregation at cancer cell interface favoring endocytosis whereas aggregation is essential to enable nanoparticles retention and subsequent cancer cell uptake in tumor microenvironment. Present studies are largely conducted in vitro with simplified simulated biological media. Future aggregation assessment of nanoparticles in biological fluids that mimic that of patients is imperative to address conflicting materials and designs required as a function of body sites in order to realize the future clinical benefits.
    Matched MeSH terms: Polyethylene Glycols
  13. Chow YH, Yap YJ, Tan CP, Anuar MS, Tejo BA, Show PL, et al.
    J Biosci Bioeng, 2015 Jul;120(1):85-90.
    PMID: 25553974 DOI: 10.1016/j.jbiosc.2014.11.021
    In this paper, a linear relationship is proposed relating the natural logarithm of partition coefficient, ln K for protein partitioning in poly (ethylene glycol) (PEG)-phosphate aqueous two-phase system (ATPS) to the square of tie-line length (TLL(2)). This relationship provides good fits (r(2) > 0.98) to the partition of bovine serum albumin (BSA) in PEG (1450 g/mol, 2000 g/mol, 3350 g/mol, and 4000 g/mol)-phosphate ATPS with TLL of 25.0-50.0% (w/w) at pH 7.0. Results also showed that the plot of ln K against pH for BSA partitioning in the ATPS containing 33.0% (w/w) PEG1450 and 8.0% (w/w) phosphate with varied working pH between 6.0 and 9.0 exhibited a linear relationship which is in good agreement (r(2) = 0.94) with the proposed relationship, ln K = α' pH + β'. These results suggested that both the relationships proposed could be applied to correlate and elucidate the partition behavior of biomolecules in the polymer-salt ATPS. The influence of other system parameters on the partition behavior of BSA was also investigated. An optimum BSA yield of 90.80% in the top phase and K of 2.40 was achieved in an ATPS constituted with 33.0% (w/w) PEG 1450 and 8.0% (w/w) phosphate in the presence of 8.5% (w/w) sodium chloride (NaCl) at pH 9.0 for 0.3% (w/w) BSA load.
    Matched MeSH terms: Polyethylene Glycols/chemistry*
  14. Yasin SM, Ibrahim S, Johan MR
    ScientificWorldJournal, 2014;2014:547076.
    PMID: 25133244 DOI: 10.1155/2014/547076
    New solid polymer electrolytes (SPE) based on poly(ethylene oxide) (PEO) doped with lithium trifluoromethanesulfonate (LiCF3SO3), dibutyl phthalate (DBP) plasticizer, and zirconium oxide (ZrO2) nanoparticles were prepared by solution-casting technique. The conductivity was enhanced by addition of dibutyl phthalate (DBP) plasticizer and ZrO2 nanofiller with maximum conductivity (1.38 × 10(-4) Scm(-1)). The absorption edge and band gap values showed decreases upon addition of LiSO3CF3, DBP, and ZrO2 due to the formation of localized states in the SPE and the degree of disorder in the films increased.
    Matched MeSH terms: Polyethylene Glycols/chemistry*
  15. Sim LH, Gan SN, Chan CH, Yahya R
    Spectrochim Acta A Mol Biomol Spectrosc, 2010 Aug;76(3-4):287-92.
    PMID: 20444642 DOI: 10.1016/j.saa.2009.09.031
    The interaction behaviours between components of polyacrylate (PAc)/poly(ethylene oxide) (PEO) and lithium perchlorate (LiClO(4)) were investigated in detail by Attenuated Total Reflectance (ATR)-Fourier Transformed Infrared (FTIR) spectroscopy. Solution cast films of the PAc/PEO and PAc/PEO/LiClO(4) were examined. No obvious shifting of the characteristic ether and ester group stretching modes of PEO and PAc was observed, indicating incompatibility of the binary PAc/PEO blend. The spectroscopic studies on the PAc/PEO/LiClO(4) blends reveal that Li(+) ions coordinate individually to the polymer components at the ether oxygen of PEO and the C-O of the ester group of PAc. Frequency changes observed on the nu(C-O-C) and omega(CH(2)) of PEO confirm the coordination between PEO and Li(+) ions resulting in crystallinity suppression of PEO. The absence of experimental evidence on the formation of PEO-Li(+)-PAc complexes suggests that LiClO(4) does not enhance the compatibility of PAc/PEO blend.
    Matched MeSH terms: Polyethylene Glycols/chemistry*
  16. Anniebell S, Gopinath SCB
    Curr Med Chem, 2018;25(12):1433-1445.
    PMID: 28093984 DOI: 10.2174/0929867324666170116123633
    BACKGROUND: Research interest on the properties of polymer conjugated gold nanoparticle (GNP) in biomedicine is rapidly rising because of the extensive evidences for their unique properties. In the field of biomedicine, GNPs have been widely used because of their inertness and low levels of cytotoxicity. Therefore, when exposed to cells, they are less prone to exert damaging effects. GNPs are capable of being functionalized as desired and are ideal as they do not encourage undesired side reactions that might counter react with the intention of the functionalization. Biofouling is an occurrence that takes place at cellular and biological molecular level, binds non-specifically on the detection surface and forms a wrong output. This undesired incidence can be avoided by conjugating the surface of biomolecules with polymers. Densely packed repeating chains of polymers such as polyethylene glycol are capable of decreasing non-specific reactions. Applications of polymer conjugated GNPs in the field of biomedicine are as biosensors, delivery and therapeutic agents.

    CONCLUSION: Therefore, the properties and applications of polymer conjugated GNPs are studied widely as overviewed here.

    Matched MeSH terms: Polyethylene Glycols/chemistry*
  17. Choudhury H, Gorain B, Pandey M, Kumbhar SA, Tekade RK, Iyer AK, et al.
    Int J Pharm, 2017 Aug 30;529(1-2):506-522.
    PMID: 28711640 DOI: 10.1016/j.ijpharm.2017.07.018
    Docetaxel (DTX) is one of the important antitumor drugs, being used in several common chemotherapies to control leading cancer types. Severe toxicities of the DTX are prominent due to sudden parenteral exposure of desired loading dose to maintain the therapeutic concentration. Field of nanotechnology is leading to resist sudden systemic exposure of DTX with more specific delivery to the site of cancer. Further nanometric size range of the formulation aid for prolonged circulation, thereby extensive exposure results better efficacy. In this article, we extensively reviewed the therapeutic benefit of incorporating d-α-tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS, or simply TPGS) in the nanoparticle (NP) formulation of DTX for improved delivery, tumor control and tolerability. TPGS is well accepted nonionic-ampiphilic polymer which has been identified in the role of emulsifier, stabilizer, penetration enhancer, solubilizer and in protection in micelle. Simultaneously, P-glycoprotein inhibitory activity of TPGS in the multidrug resistant (MDR) cancer cells along with its apoptotic potential are the added advantage of TPGS to be incorporated in nano-chemotherapeutics. Thus, it could be concluded that TPGS based nanoparticulate application is an advanced approach to improve therapeutic efficacy of chemotherapeutic agents by better internalization and sustained retention of the NPs.
    Matched MeSH terms: Polyethylene Glycols/chemistry
  18. Almoustafa HA, Alshawsh MA, Chik Z
    Int J Pharm, 2017 Nov 25;533(1):275-284.
    PMID: 28943210 DOI: 10.1016/j.ijpharm.2017.09.054
    Nanoprecipitation is a simple and increasingly trending method for nanoparticles preparation. The self-assembly feature of poly (ethylene glycol)-poly (lactide-co-glycolic acid) (PEG-PLGA) amphiphilic copolymer into a nanoparticle and its versatile structure makes nanoprecipitation one of the best methods for its preparation. The aim of this study is to review currently available literature for standard preparation of PEG-PLGA nanoparticles using nanoprecipitation technique in order to draw conclusive evidenceto draw conclusive evidence that can guide researchers during formulation development. To achieve this, three databases (Web of Science, Scopus and PubMed) were searched using relevant keywords and the extracted articles were reviewed based on defined inclusion and exclusion criteria. Data extraction and narrative analysis of the obtained literature was performed when appropriate, along with our laboratory observations to support those claims wherever necessary. As a result of this analysis, reports that matched our criteria conformed to the general facts about nanoprecipitation techniques such as simplicity in procedure, low surfactants requirement, narrow size distribution, and low resulting concentrations. However, these reports showed interesting advantages for using PEG-PLGA as they are frequently reported to be freeze-dried and active pharmaceutical ingredients (APIs) with low hydrophobicity were reported to successfully be encapsulated in the particles.
    Matched MeSH terms: Polyethylene Glycols/chemistry*
  19. Phong WN, Show PL, Chow YH, Ling TC
    J Biosci Bioeng, 2018 Sep;126(3):273-281.
    PMID: 29673987 DOI: 10.1016/j.jbiosc.2018.03.005
    Aqueous two-phase system (ATPS) has been suggested as a promising separation tool in the biotechnological industry. This liquid-liquid extraction technique represents an interesting advance in downstream processing due to several advantages such as simplicity, rapid separation, efficiency, economy, flexibility and biocompatibility. Up to date, a range of biotechnological products have been successfully recovered from different sources with high yield using ATPS-based strategy. In view of the important potential contribution of the ATPS in downstream processing, this review article aims to provide latest information about the application of ATPS in the recovery of various biotechnological products in the past 7 years (2010-2017). Apart from that, the challenges as well as the possible future work and outlook of the ATPS-based recovery method have also been presented in this review article.
    Matched MeSH terms: Polyethylene Glycols/chemistry
  20. Dabbagh A, Hedayatnasab Z, Karimian H, Sarraf M, Yeong CH, Madaah Hosseini HR, et al.
    Int J Hyperthermia, 2019;36(1):104-114.
    PMID: 30428737 DOI: 10.1080/02656736.2018.1536809
    PURPOSE: Although magnetite nanoparticles (MNPs) are promising agents for hyperthermia therapy, insufficient drug encapsulation efficacies inhibit their application as nanocarriers in the targeted drug delivery systems. In this study, porous magnetite nanoparticles (PMNPs) were synthesized and coated with a thermosensitive polymeric shell to obtain a synergistic effect of hyperthermia and chemotherapy.

    MATERIALS AND METHODS: PMNPs were produced using cetyltrimethyl ammonium bromide template and then coated by a polyethylene glycol layer with molecular weight of 1500 Da (PEG1500) and phase transition temperature of 48 ± 2 °C to endow a thermosensitive behavior. The profile of drug release from the nanostructure was studied at various hyperthermia conditions generated by waterbath, magnetic resonance-guided focused ultrasound (MRgFUS), and alternating magnetic field (AMF). The in vitro cytotoxicity and hyperthermia efficacy of the doxorubicin-loaded nanoparticles (DOX-PEG1500-PMNPs) were assessed using human lung adenocarcinoma (A549) cells.

    RESULTS: Heat treatment of DOX-PEG1500-PMNPs containing 235 ± 26 mg·g-1 DOX at 48 °C by waterbath, MRgFUS, and AMF, respectively led to 71 ± 4%, 48 ± 3%, and 74 ± 5% drug release. Hyperthermia treatment of the A549 cells using DOX-PEG1500-PMNPs led to 77% decrease in the cell viability due to the synergistic effects of magnetic hyperthermia and chemotherapy.

    CONCLUSION: The large pores generated in the PMNPs structure could provide a sufficient space for encapsulation of the chemotherapeutics as well as fast drug encapsulation and release kinetics, which together with thermosensitive characteristics of the PEG1500 shell, make DOX-PEG1500-PMNPs promising adjuvants to the magnetic hyperthermia modality.

    Matched MeSH terms: Polyethylene Glycols/chemistry*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links