RESULTS: Mean orthodontic bracket debonding force measured by the prototype device (9.36 ± 1.65 N) and the universal testing machine (10.43 ± 2.71 N) was not significantly different (p
MATERIALS AND METHODS: Three different makes of ceramic brackets, Pure Sapphire(M), Clarity™ ADVANCED(P) and Dual Ceramic(P) were used. Eighteen specimens of each make were prepared and allocated to three groups (n = 6). MARC(®)-resin calibrator was used to determine the light curing unit (LCU) tip irradiance (mW/cm(2)) and TLE (J/cm(2)) transmitted through the ceramic brackets, and through ceramic bracket plus Transbond™ XT Light Cure Adhesive, for 5, 10 and 20 s. Vickers-hardness values at the bottom of the cured adhesive were determined. Statistical analysis used one-way analysis of variance (ANOVA); P = 0.05.
RESULTS: TLE transmission rose significantly among all samples with increasing exposure durations. TLE reaching the adhesive- enamel interface was less than 10 J/cm(2), and through monocrystalline and polycrystalline ceramic brackets was significantly different (P
METHODS: Three sets of fake archwires (AWs) and brackets (Bs) as well as a set of controls were immersed in AS and placed in an incubator shaker at 50 rpm and 37°C. At Days 0, 1, 7, 14, 21, and 28, the pH of the AS medium was measured and 3.0 ml of AS was collected and stored at -20°C for elemental analysis.
RESULTS: Significant changes in pH were observed on Days 0, 1, 7, 14, 21, and 28 in the AS of the AW group. However, these changes were only observed in the B group on Days 0 and 7. The fake samples released a large quantity of sodium (Na), potassium (K), and calcium (Ca) ions, at concentrations exceeding 100 mg/L, post-28 days of immersion. The control and fake braces samples released other ions; such as lithium (Li), magnesium (Mg), barium (Ba), chromium (Cr), copper (Cu), lead (Pb), and aluminium (Al); at concentrations that did not exceed 10 mg/L.
CONCLUSIONS: The pH of the AS of all the samples increased post-incubation. Only 10 ions; namely, Na, Li, K, Mg, Ca, Ba, Cr, Cu, Pb, and Al; were detected in the AS.
Methods: A total of eighteen (18) malocclusion patients were identified. Malocclusion patients were subdivided into 3 groups based on the bracket selection (conventional, self-ligating, and ceramic bracket) with 6 patients for each group. sEMG of muscles were done using a two-channel electromyography device, where pregelled and self-adhesive electrodes (bilateral) were applied. Chewing and clenching of masseter and temporalis muscle activity were recorded for 20 s pre and 6 months of orthodontic treatment using sEMG (frequency 60 Hz). The data were analysed by using repeated measures ANOVA in IBM SPSS Statistics Version 24.0.
Results: Chewing and clenching for masseter muscle showed no significant difference (P > 0.05) in sEMG activity of three types of the brackets. However, for temporalis muscle, there was a significant difference found in sEMG activity during chewing (P < 0.05) and clenching (P < 0.05) between these three brackets.
Conclusion: The activity of temporalis muscle showed significant changes in chewing and clenching, where the conventional group demonstrated better muscle activity pre and at six months of fixed appliances.
Results: A significant difference (p < 0.001) of mean debonding force was found between different types of teeth in vivo. Clinically, ARI scores were not significantly different (p = 0.921) between different groups, but overall higher scores were predominant.
Conclusion: Bracket debonding force should be measured on the same tooth from the same arch as the significant difference of mean debonding force exists between similar teeth of the upper and lower arches. The insignificant bracket failure pattern with higher ARI scores confirms less enamel damage irrespective of tooth types.
METHODS: Six makes, three each monocrystalline (M) and polycrystalline (P) were used; PureSapphire (M), SPA Aesthetic (M), Ghost (M), Mist (P), Reflections (P), and Dual Ceramic (P). The Ortholux™ Light Curing Unit (LCU) was used to cure the orthodontic adhesive Transbond™XT. The LCU's tip irradiance was measured and TLE transmitted through the ceramic bracket was obtained, then adhesive added to the bracket, and transmitted TLE measured through bracket-plus-adhesive samples. The LCU was set at five seconds as recommended for curing adhesive through ceramic brackets.
RESULTS: Mean tip irradiance was 1859.2±16.2mW/cm2. The TLE transmitted through brackets alone ranged 1.7 to 3.9J/cm2, in the descending order: Ghost>Pure Sapphire>Reflections>Mist>SPA Aesthetics>Dual Ceramic. The TLE transmitted through bracket-plus-adhesive samples ranged 1.6 to 3.7J/cm2, in the descending order: Ghost>Mist>Reflections>Pure Sapphire>SPA Aesthetics>Dual Ceramic. TLE was reduced with the addition of adhesive (range -0.1 to -0.7J/cm2). There was a significant difference for Pure Sapphire, Reflections, and Mist (P<0.05), but not for SPA Aesthetics, Ghost, and Dual Ceramic. There was no overall significant difference between the monocrystalline and polycrystalline makes. The two best makes were of the monocrystalline type, concerning TLE transmission, but with the exception of polycrystalline Dual Ceramic; the next worst make was a monocrystalline bracket, SPA Aesthetics.
CONCLUSION: Light energy attenuation through ceramic orthodontic brackets is make-dependent, with no overall difference between monocrystalline and polycrystalline brackets. Light energy is further attenuated with the addition of resin-based orthodontic adhesive.
METHODS: Twenty-two patients (11 male, 11 female; mean age, 19.8 ± 3.1 years) with Angle Class II Division 1 malocclusion were recruited for this split-mouth clinical trial; they required extraction of maxillary first premolars bilaterally. After leveling and alignment with self-ligating brackets (SmartClip SL3; 3M Unitek, St Paul, Minn), a 150-g force was applied to retract the canines bilaterally using 6-mm nickel-titanium closed-coil springs on 0.019 x 0.025-in stainless steel archwires. A gallium-aluminum-arsenic diode laser (iLas; Biolase, Irvine, Calif) with a wavelength of 940 nm in a continuous mode (energy density, 7.5 J/cm2/point; diameter of optical fiber tip, 0.04 cm2) was applied at 5 points buccally and palatally around the canine roots on the experimental side; the other side was designated as the placebo. Laser irradiation was applied at baseline and then repeated after 3 weeks for 2 more consecutive follow-up visits. Questionnaires based on the numeric rating scale were given to the patients to record their pain intensity for 1 week. Impressions were made at each visit before the application of irradiation at baseline and the 3 visits. Models were scanned with a CAD/CAM scanner (Planmeca, Helsinki, Finland).
RESULTS: Canine retraction was significantly greater (1.60 ± 0.38 mm) on the experimental side compared with the placebo side (0.79 ± 0.35 mm) (P <0.05). Pain was significantly less on the experimental side only on the first day after application of LLLI and at the second visit (1.4 ± 0.82 and 1.4 ± 0.64) compared with the placebo sides (2.2 ± 0.41 and 2.4 ± 1.53).
CONCLUSIONS: Low-level laser irradiation applied at 3-week intervals can accelerate orthodontic tooth movement and reduce the pain associated with it.
Aim: To analyse various pain scales commonly used to determine the effect of different pain control methods during debonding of orthodontic brackets. Study Design. A comparative cross-sectional study performed on a sample of 60 patients (n = 60) including 14 males and 46 females who were ready for debonding and who were divided into three groups, i.e., finger pressure (FP), elastomeric wafer (EW), and stress relief (SR).
Materials and Methods: A 100 mm Visual Analog Scale (VAS) was used to record the pain intensity for each tooth. Another scale known as Pain Catastrophizing Scale (PCS) was used to evaluate the patient's general attitude towards pain perception. The armamentarium and operator were kept same for all the patients. Statistical analysis used was the Kruskal-Wallis test, used for intergroup and intragroup comparison of pain scores.
Results: Lowest total pain score was recorded in the FP group (P=0.043) on intergroup comparison, while on intragroup comparison, higher pain scores were recorded in lower anterior region (P=0.02) in all three groups. There was no significant difference between the pain scores reported by the male and female subjects.
Conclusion: FP is an effective method of pain control. And teeth in the anterior region of lower and upper arches are more sensitive to pain. In terms of cognitive-affective constructs, although the VAS has been widely used in previous studies, the PCS has been detailed to show the most reliable association with physical discomfort and emotional distress.
METHODS: Different volume percentages of HEMA were tested in four experimental silane-based primer solutions (additions of HEMA: 0, 5.0 vol%, 25.0 vol% and 50.0 vol%). An experimental silane blend (primer) of 1.0 vol% 3-isocyanatopropyltrimethoxysilane (ICMS) + 0.5% bis-1,2-(triethoxysilyl) ethane (BTSE) was prepared and used. The experimental primers together with the control group were applied onto acid-etched premolars for attachment of orthodontic brackets. After artificial aging by thermocycling the shear-bond strength was measured. The fractured surfaces of all specimens were examined under scanning electron microscopy (SEM) to evaluate the failure mode on the enamel surface.
RESULTS: The experimental primers showed the highest shear-bond strength of 21.15 MPa (SD ± 2.70 MPa) and with 25 vol% showed a highly significant increase (P < 0.05) in bond strength. The SEM images showed full penetration of adhesive agents when using silane-based primers. In addition, the SEM images suggested that the predominant failure type was not necessarily the same as for the failure propagation.
CONCLUSIONS: This preliminary study suggested that nonacidic silane-based primers with HEMA addition might be an alternative to for use as adhesion promoting primers.