Displaying all 5 publications

Abstract:
Sort:
  1. Kooijman AM, Bruin CJW, van de Craats A, Grootjans AP, Oostermeijer JGB, Scholten R, et al.
    Sci Total Environ, 2016 Oct 15;568:107-117.
    PMID: 27289393 DOI: 10.1016/j.scitotenv.2016.05.086
    Dune slacks are important habitats, with many endangered plant species. A series of eleven dune slacks of 1-42years old was studied in SW-Texel, the Netherlands, with the EU-habitat directive species Liparis loeselii present in all except the youngest and oldest. Analysis of aerial photographs revealed that new slacks are currently formed every 4-5years. In each slack, topsoil and vegetation data were collected in 2010 and 2014-2015. During succession, vegetation changed from brackish pioneer stages to dune slacks with L. loeselii and Parnassia palustris and ultimately grassland species. Differences between dune slacks and sampling periods were mostly significant. Herb cover and soil C increased with slack age, and over the five year study period, while bare sand, bulk density and pH decreased. The annual pH-decrease was 0.055 and 0.075 for pH-H2O and pH-KCl respectively, and annual C-increase 0.16% and 35gm(-2). Liparis loeselii was only present between pHH2O 5.8-7.5 and pHKCl 5.6-7.6, and only occurred at C-content below 4.3%. In lime-poor dunes, environmental conditions thus become unsuitable approximately 34years after the start of succession. In the dune slacks, Liparis loeselii established within 6years, showed peak values after 11-16years, and declined until conditions became unsuitable. Rejuvenation may occur after large storms with fresh sand deposits. However, even with further succession, the present populations are not endangered and probably last until 2040. With new dune slacks every 5years, L. loeselii occurs in approximately eight different dune slacks at the same time, ensuring viable populations also in the future. This shows that adverse effects of succession can be counteracted by dynamics on local and landscape scale.
    Matched MeSH terms: Orchidaceae/physiology*
  2. Tan KH, Nishida R, Toong YC
    J Chem Ecol, 2002 Jun;28(6):1161-72.
    PMID: 12184394 DOI: 10.1023/A:1016277500007
    The major fruit fly attractant component in the floral fragrance of Bulbophyllum cheiri (fruit fly orchid) is methyl eugenol (ME). In the lowland rain forest of Malaysia, the solitary and nonresupinate flowers of the fruit fly orchid attract only males of the ME-sensitive fruit fly species (Bactrocera carambolae, B. papayae. and B. umbrosa. During the morning, the fruit fly orchid flower is visited by many fruit flies, which can sometimes cover the whole flower. The number of visitors dwindles in the afternoon. Headspace analysis of the flower shows a high ME peak in the morning, a small one between 12:00 and 14:00 hr, and no detectable ME peak after 14:00 hr. The process of pollination in the wild is initiated by attraction of fruit flies to floral ME. The flower, with the aid of its specialized hinged see-saw lip (labellum), temporarily traps (< 1 min) a fruit fly pollinator between its lip and column. Just prior to this, the fly is rewarded by the opportunity to feed on the floral attractant found on surfaces of petals, sepals, and lip. The pollinaria borne by two wild B. papayae males (caught on and near the fruit fly orchid flower) are identical in morphology and structure with those obtained from the flower. Many of the B. papayae males (17 of 22 analyzed) attracted to the fruit fly orchid already possessed both ME metabolites, trans-coniferyl alcohol and 2-allyl-4,5-dimethoxyphenol, in their rectal glands. indicating that they had previously consumed ME. In this orchid-fruit fly association, both organisms gain direct reproductive benefits: the orchid flower gets pollinated without having to offer nectar, while the fruit fly boosts its pheromone and defense system, as well as its sexual competitiveness by feeding on the ME produced by the flower.
    Matched MeSH terms: Orchidaceae/physiology*
  3. Ping KS, Poobathy RR, Zakaria R, Subramaniam S
    Cryo Letters, 2018 5 8;38(4):290-298.
    PMID: 29734430
      BACKGROUND: Conservation of commercially important ornamental plants is important to maintain its unique beauty to cater the market demands.

    OBJECTIVE: The main objective is to develop an efficient cryopreservation technique for Aranda Broga Blue orchid PLBs using droplet-vitrification method.

    MATERIALS AND METHODS: Several critical factors in cryopreservation were accessed such as preculture concentrations and durations, choice of vitrification solutions, two-step or three-step vitrification, growth recovery medium and PVS2 exposure duration.

    RESULTS: The best growth regeneration percentage (5%) was obtained when 3-4mm PLBs were precultured in 0.2M sucrose for 3 days, followed by osmoprotection for 20 minutes, dehydration in PVS2 for 20 minutes at 0 degree C, LN storage, thawed and unloading for 20 minutes, and growth regeneration in VW10 medium. PLBs were found to be very sensitive to osmotic stress imposed by high molecular weight cryoprotectant such as sucrose and glycerol. Osmotic potential of growth recovery medium is one of the main factors that affect growth recovery in cryopreserved PLBs.

    CONCLUSION: Current report showed possibilities in cryopreserving Aranda Broga Blue PLBs using droplet-vitrification technique. However, further improvement of growth recovery can be done by focussing on approaches that facilitate sufficient water removal from PLBs without causing severe osmotic injuries to the plant cells.

    Matched MeSH terms: Orchidaceae/physiology*
  4. Tan KH, Tan LT, Nishida R
    J Chem Ecol, 2006 Nov;32(11):2429-41.
    PMID: 17082990 DOI: 10.1007/s10886-006-9154-4
    It is widely believed that most orchid flowers attract insects by using deception or chemical rewards in the form of nectar. Flowers of Bulbophyllum vinaceum produce a large array of phenylpropanoids that lure tephritid fruit fly males and also act as floral reward, which the flies subsequently convert to pheromone components. The major floral volatile components identified are methyl eugenol (ME), trans-coniferyl alcohol (CF), 2-allyl-4,5-dimethoxphenol (DMP), and trans-3,4-dimethoxycinnamyl acetate, whereas the minor components are eugenol, euasarone, trans-3,4-dimethoxy cinnamyl alcohol, and cis-coniferyl alcohol. Among the various floral parts, the lip (which is held in a closed position up against the sexual organs) has the highest concentration of the major compounds. An attracted male fly normally lands on one of the petals before climbing up onto and forcing the "spring loaded" floral lip into the open position, hence exposing the floral sexual organs. The architecture and location of chemical attractants of the lip compel the fly to align itself along the lip's longitudinal axis in a precise manner. As the fly laps up the compounds and moves towards the base of the lip, it passes the point of imbalance causing the lip to spring back to its normal closed position. The fly is catapulted headfirst into the column cavity, and its dorsum strikes the protruding sticky base of the hamulus and adheres to it. The momentum of the fly and the structural morphology of the long stiff hamulus act to pry out the pollinia from its anther cover. Hence, the pollinarium (pollinia + hamulus) is detached from the flower and adhered to the fly's dorsum. In this unique mutualistic association, both species receive direct reproductive benefits--the flower's pollinarium is transported for cross pollination, and the fly is offered a bouquet of phenylpropanoids (synomone) that it consumes, converts, and/or sequesters as sex pheromonal components, thus enhancing sexual attraction and mating success.
    Matched MeSH terms: Orchidaceae/physiology*
  5. Keng-Hong T, Nishida R
    J Chem Ecol, 2005 Mar;31(3):497-507.
    PMID: 15898497
    Bulbophyllum apertum flower (Orchidaceae) releases raspberry ketone (RK) in its fragrance, which attracts males of several fruit fly species belonging to the genus Bactrocera. Besides RK as a major component, the flower contains smaller amounts of 4-(4-hydroxylphenyl)-2-butanol, plus two minor volatile components, veratryl alcohol and vanillyl alcohol. Within the flower, the lip (labellum) had the highest concentration of RK with much smaller quantities present in petals; other flower parts had no detectable RK. Male fruit flies attracted to the flower belong to RK-sensitive species--such as Bactrocera albistragata, B. caudatus, B. cucurbitae (melon fly), and B. tau. Removal and attachment of the pollinarium to a fly's thoracic dorsum occurred when a male of B. albistragata was toppled into the floral column cavity, due to an imbalance caused by it shifting its body weight while feeding on the see-saw lip, and then freeing itself after being momentarily trapped between the lip and column. During this process, the stiff hamulus (the pollinia stalk protruding prominently towards the lip) acted as a crowbar when it was brushed downwards by the toppled fly and lifted the pollinia out of the anther. If the fly was big or long for the small triangular lip, it would not be toppled into the column cavity and would just walk across the column, during which time the pollinarium could be accidentally removed by the fly's leg, resulting in a failed transport of the pollinarium. This suggests an unstable situation, where the orchid relies only on a particular pollinator species in the complex ecosystem where many RK-sensitive species inhabit. Wild males of B. caudatus (most common visitors) captured on Bulbophyllum apertum flowers were found to sequester RK in their bodies as a potential pheromonal and allomonal ingredient. Thus, RK can act either as a floral synomone (pollinarium transported) or kairomone (accidental removal of pollinarium leading to total pollen wastage), depending on the body size of the male fruit flies visiting the flowers.
    Matched MeSH terms: Orchidaceae/physiology*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links