METHODS: A self-administered anonymised questionnaire, constructed in English and translated in six more languages, was distributed through reputed international professional bodies and academic institutions worldwide. The questionnaire included items on demographic characteristics, type of practice, and questions designed to explore practitioners' perspective on the future of their CL practice over the next five years.
RESULTS: A total of 2408 valid responses were analysed. Multifocal CLs for presbyopia, CLs for myopia control, use of daily disposable (DD) CLs for occasional wear, and biocompatible materials to improve comfort were identified as promising areas of opportunities by practitioners (all 8/10). Respondents from North America, and Europe valued DDCLs for occasional wear moderately more favourable (Median: 9/10 for all) as compared to colleagues in Asia (Median: 8/10, p myopia control with CLs. Lack of regulation in CL sales, especially online, seemed to be a constant threat. The insights from this study can be used to design targeted strategies to enhance CL practice across the globe and in specific geographical areas.
METHODS: Faecal samples were collected from 52 adult participants, of whom 23 were NM, 8 were progressive myopes (PM), and 21 were stable myopes (SM). The composition of the gut microbiota in each group was analysed using 16S ribosomal RNA gene sequencing.
RESULTS: There were no significant differences in alpha and beta diversity between the three groups (NM, PM, and SM). However, the distributions of Bifidobacterium, Bacteroides, Megamonas, Faecalibacterium, Coprococcus, Dorea, Roseburia, and Blautia were significantly higher in the myopes (SM and PM combined) when compared with emmetropes. The myopes exhibited significantly greater abundance of bacteria that are linked to the regulation of dopaminergic signalling, such as Clostridium, Ruminococcus, Bifidobacterium, and Bacteroides. Individuals with stable myopia were found to have a significantly higher proportion of Prevotella copri than those with progressive myopia. Bifidobacterium adolescentis, a gamma-aminobutyric acid (GABA)-producing bacterium, was significantly higher in all myopes than in NM and, in the comparison between SM and PM, it is significantly higher in SM. B. uniformis and B. fragilis, both GABA-producing Bacteroides, were present in relatively high abundance in all myopes and in SM compared with PM, respectively.
CONCLUSIONS: The presence of bacteria related to dopamine effect and GABA-producing bacteria in the gut microbiome of myopes may suggest a role of these microorganisms in the onset and progression of myopia.
METHODS: Twenty-seven right eyes (24 females and 3 males) of 27 myopic schoolchildren aged between 13 and 15 years were included in this study. The measurements of central refraction, peripheral refraction (between 35° temporal and 35° nasal visual field in 5° steps), and lag of accommodation were conducted using the Grand-Seiko WR-5100K open-field autorefractometer initially without correction (WC), followed by with correction using four different addition powers of Proclear® multifocal D-Design contact lens in random sequence. Axial length was measured using a handheld probe ultrasound A-scan (Tomey AL-2000).
RESULTS: The relative peripheral refractive error showed high hyperopic defocus of +1.08 ± 1.24 D at 35° nasal and +1.06 ± 1.06 D at 35° temporal visual field WC. All Proclear multifocal contact lenses (MFCLs) decreased the peripheral hyperopic defocus with increasing addition powers (F [2.938, 47.001] = 13.317, P < 0.001). However, only +3.00 D addition and +3.50 D addition (P = 0.001) could invert the peripheral hyperopic defocus into peripheral myopic defocus. Apart from that, the +3.00 D addition lens showed the lowest lag of accommodation (+1.10 ± 0.83 D) among the other MFCL adds (P = 0.002).
CONCLUSION: A +3.00 D addition Proclear MFCL is the optimal addition power that can invert the pattern of peripheral hyperopic defocus into myopic defocus.