Displaying all 7 publications

Abstract:
Sort:
  1. Yin WF, Purmal K, Chin S, Chan XY, Koh CL, Sam CK, et al.
    Sensors (Basel), 2012;12(3):3472-83.
    PMID: 22737019 DOI: 10.3390/s120303472
    Bacteria communicate by producing quorum sensing molecules called autoinducers, which include autoinducer-1, an N-hexanoyl homoserine lactone (AHL), and autoinducer-2. Bacteria present in the human oral cavity have been shown to produce autoinducer-2, but not AHL. Here, we report the isolation of two AHL-producing Klebsiella pneumoniae strains from the posterior dorsal surface of the tongue of a healthy individual. Spent culture supernatant extracts from K. pneumoniae activated the biosensors Agrobacterium tumefaciens NTL4(pZLR4) and Escherichia coli [pSB401], suggesting the presence of both long and short chain AHLs. High resolution mass spectrometry analyses of these extracts confirmed that both K. pneumoniae isolates produced N-octanoylhomoserine lactone and N-3-dodecanoyl-L-homoserine lactone. To the best of our knowledge, this is the first report of the isolation of K. pneumoniae from the posterior dorsal surface of the human tongue and the production of these AHLs by this bacterium.
    Matched MeSH terms: Klebsiella pneumoniae/classification
  2. Al-Marzooq F, Yusof MY, Tay ST
    Jpn J Infect Dis, 2013;66(6):555-7.
    PMID: 24270152
    Matched MeSH terms: Klebsiella pneumoniae/classification*
  3. Wong NA, Linton CJ, Jalal H, Millar MR
    Epidemiol Infect, 1994 Dec;113(3):445-54.
    PMID: 7995354
    Discriminatory typing methods are invaluable in the investigation of outbreaks of infectious diseases. Single primers were used to generate randomly amplified polymorphic DNA (RAPD) profiles from Klebsiella pneumoniae isolates of various serotype and K. pneumoniae isolates from cases of sepsis at a Malaysian hospital and two English hospitals. RAPD profiles of acceptable reproducibility, a maximum of three minor band variations, were produced using a rapid DNA extraction method. RAPD typing of K. pneumoniae was shown to be as discriminatory as restriction fragment length polymorphism analysis using pulsed field gel electrophoresis yet quicker and less costly. The findings suggest that RAPD typing may be a useful tool for the epidemiological typing of K. pneumoniae.
    Matched MeSH terms: Klebsiella pneumoniae/classification*
  4. Lin YT, Siu LK, Lin JC, Chen TL, Tseng CP, Yeh KM, et al.
    BMC Microbiol, 2012;12:13.
    PMID: 22260182 DOI: 10.1186/1471-2180-12-13
    Capsular serotypes K1 and K2 of Klebsiella pneumoniae are thought to the major virulence determinants responsible for liver abscess. The intestine is one of the major reservoirs of K. pneumoniae, and epidemiological studies have suggested that the majority of K. pneumoniae infections are preceded by colonization of the gastrointestinal tract. The possibility of fecal-oral transmission in liver abscess has been raised on the basis of molecular typing of isolates. Data on the serotype distribution of K. pneumoniae in stool samples from healthy individuals has not been previously reported. This study investigated the seroepidemiology of K. pneumoniae isolates from the intestinal tract of healthy Chinese in Asian countries. Stool specimens from healthy adult Chinese residents of Taiwan, Japan, Hong Kong, China, Thailand, Malaysia, Singapore, and Vietnam were collected from August 2004 to August 2010 for analysis.
    Matched MeSH terms: Klebsiella pneumoniae/classification*
  5. Mobasseri G, Thong KL, Teh CSJ
    Int Microbiol, 2021 May;24(2):243-250.
    PMID: 33469786 DOI: 10.1007/s10123-021-00161-5
    Extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae has been associated with a wide range of infections in humans and animals. The objective of this study was to determine the genomic characteristics of two multiple drug resistant, ESBLs-producing K. pneumoniae strains isolated from a swine in 2013 (KP2013Z28) and a hospitalized patient in 2014 (KP2014C46) in Malaysia. Genomic analyses of the two K. pneumoniae strains indicated the presence of various antimicrobial resistance genes associated with resistance to β-lactams, aminoglycosides, colistin, fluoroquinolones, phenicols, tetracycline, sulfonamides, and trimethoprim, corresponding to the antimicrobial susceptibility profiles of the strains. KP2013Z28 (ST25) and KP2014C46 (ST929) harbored 5 and 2 genomic plasmids, respectively. The phylogenomics of these two Malaysian K. pneumoniae, with other 19 strains around the world was determined based on SNPs analysis. Overall, the strains were resolved into five clusters that comprised of strains with different resistance determinants. This study provided a better understanding of the resistance mechanisms and phylogenetic relatedness of the Malaysian strains with 19 strains isolated worldwide. This study also highlighted the needs to monitor the usage of antibiotics in hospital settings, animal husbandry, and agricultural practices due to the increase of β-lactam, aminoglycosides, tetracycline, and colistin resistance among pathogenic bacteria for better infection control.
    Matched MeSH terms: Klebsiella pneumoniae/classification
  6. Lim KT, Yeo CC, Md Yasin R, Balan G, Thong KL
    J Med Microbiol, 2009 Nov;58(Pt 11):1463-1469.
    PMID: 19589908 DOI: 10.1099/jmm.0.011114-0
    The emergence of multidrug-resistant (MDR) and extended-spectrum beta-lactamase (ESBL)-producing Klebsiella pneumoniae poses a serious antibiotic management problem as resistance genes are easily transferred from one organism to another. Fifty-one strains of K. pneumoniae isolated from sporadic cases in various hospitals throughout Malaysia were analysed by antimicrobial susceptibility testing, PCR detection of ESBL-encoding genes and DNA fingerprinting. Although 27 of the 51 K. pneumoniae strains were MDR (i.e. resistant to three or more classes of antibiotics), the majority of the strains (98 %) were sensitive to imipenem. PCR detection using ESBL gene-specific primers showed that 46 of the K. pneumoniae strains harboured bla(SHV), 19 harboured bla(CTX-M), 5 harboured bla(OXA-1) and 4 harboured bla(TEM-1). Class 1 integron-encoded intI1 integrase was detected in 21 of the 51 K. pneumoniae strains and amplification of the integron 5'CS region showed the presence of several known antibiotic resistance gene cassettes of various sizes. Results of conjugation and transformation experiments indicated that some of the ESBL-encoding genes (i.e. bla(SHV), bla(CTX-M) and bla(TEM-1)) were transmissible and were likely plasmid-encoded. DNA fingerprinting using PFGE and PCR-based methods indicated that the 51 K. pneumoniae strains were genetically diverse and heterogeneous.
    Matched MeSH terms: Klebsiella pneumoniae/classification
  7. Abbas SZ, Riaz M, Ramzan N, Zahid MT, Shakoori FR, Rafatullah M
    Braz J Microbiol, 2014;45(4):1309-15.
    PMID: 25763035
    The present study proposed the isolation of arsenic resistant bacteria from wastewater. Only three bacterial isolates (MNZ1, MNZ4 and MNZ6) were able to grow in high concentrations of arsenic. The minimum inhibitory concentrations of arsenic against MNZ1, MNZ4 and MNZ6 were 300 mg/L, 300 mg/L and 370 mg/L respectively. The isolated strains showed maximum growth at 37 °C and at 7.0 pH in control but in arsenite stress Luria Bertani broth the bacterial growth is lower than control. All strains were arsenite oxidizing. All strains were biochemically characterized and ribotyping (16S rRNA) was done for the purpose of identification which confirmed that MNZ1 was homologous to Enterobacter sp. while MNZ4 and MNZ6 showed their maximum homology with Klebsiella pneumoniae. The protein profiling of these strains showed in arsenic stressed and non stressed conditions, so no bands of induced proteins appeared in stressed conditions. The bacterial isolates can be exploited for bioremediation of arsenic containing wastes, since they seem to have the potential to oxidize the arsenite (more toxic) into arsenate (less toxic) form.
    Matched MeSH terms: Klebsiella pneumoniae/classification
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links