METHODS: 18 voluntarily participants were recruited from the Canterbury and Otago region of New Zealand to take part in a Dynamic Insulin Sensitivity and Secretion Test (DISST) clinical trial. A total of 46 DISST data were collected. However, due to ambiguous and inconsistency, 4 data had to be removed. Analysis was done using MATLAB 2020a.
RESULTS AND DISCUSSION: Results show that, with 42 gathered dataset, the ANN generates higher gains, ∅P = 20.73 [12.21, 28.57] mU·L·mmol-1·min-1 and ∅D = 60.42 [26.85, 131.38] mU·L·mmol-1 as compared to the linear least square method, ∅P = 19.67 [11.81, 28.02] mU·L·mmol-1 ·min-1 and ∅D = 46.21 [7.25, 116.71] mU·L·mmol-1. The average value of the insulin sensitivity (SI) of ANN is lower with, SI = 16 × 10-4 L·mU-1 ·min-1 than the linear least square, SI = 17 × 10-4 L·mU-1 ·min-1.
CONCLUSION: Although the ANN analysis provided a lower SI value, the results were more dependable than the linear least square model because the ANN approach yielded a better model fitting accuracy than the linear least square method with a lower residual error of less than 5%. With the implementation of this ANN architecture, it shows that ANN able to produce minimal error during optimization process particularly when dealing with outlying data. The findings may provide extra information to clinicians, allowing them to gain a better knowledge of the heterogenous aetiology of diabetes and therapeutic intervention options.
RESEARCH DESIGN AND METHOD: We reviewed a number of published articles from 2002 to 2016 to find out the appropriate management of diabetes mellitus. The paramount parameters of the selected studies include the insulin type & its dose, type of diabetes, duration and comparison of different insulin protocols. In addition, various newly developed approaches for insulin delivery with potential output have also been evaluated.
RESULTS: A great variability was observed in managing diabetes mellitus through insulin therapy and the important controlling factors found for this therapy include; dose titration, duration of insulin use, type of insulin used and combination therapy of different insulin.
CONCLUSION: A range of research articles on current trends and recent advances in insulin has been summarized, which led us to the conclusion that multiple daily insulin injections or continuous subcutaneous insulin infusion (insulin pump) is the best method to manage diabetes mellitus. In future perspectives, development of the oral and inhalant insulin would be a tremendous breakthrough in Insulin therapy.
METHODOLOGY: After collection and purification of caprine islets with Euro-Ficoll density gradients, islets were considered for viability and functionality procedures with DTZ (dithizone) staining and GSIST (glucose-stimulated insulin secretion test) subsequently. Batches of islet were selected for immunostaining and study through confocal microscopy and flow cytometry.
RESULTS: Histological sections of caprine pancreatic islets showed that α-cells were segregated at the periphery of β-cells. In caprine islets, α- and δ-cells remarkably were intermingled with β-cells in the mantle. Such cytoarchitecture was observed in all examined caprine pancreatic islets and was also reported for the islets of other ruminants. In both small and large caprine islets (< 150 and > 150 μm in diameter, respectively), the majority of β-cells were positioned at the core and α-cells were arranged at the mantle, while some single α-cells were also observed in the islet center. We evaluated the content of β-, α-, and δ-cells by confocal microscopy (n = 35, mean ± SD; 38.01 ± 9.50%, 30.33 ± 10.11%, 2.25 ± 1.10%, respectively) and flow cytometry (n = 9, mean ± SD; 37.52 ± 9.74%, 31.72 ± 4.92%, 2.70 ± 2.81%, respectively). Our findings indicate that the caprine islets are heterogeneous in cell composition. The difference could be attributed to species-specific interaction between endocrine cells and blood.
CONCLUSIONS: Comparative studies of islet architecture may lead to better understanding of islet structure and cell type population arrangement. These results suggest the use of caprine islets as an addition to the supply of islets for diabetes research.
METHODS: The literature related to T3cDM was thoroughly searched from the public domains and reviewed extensively to construct this article. Further, existing literature related to the other forms of diabetes is reviewed for projecting the differences among the different forms of diabetes. Detailed and updated information related to epidemiological evidence, risk factors, symptoms, diagnosis, pathogenesis and management is structured in this review.
RESULTS: T3cDM is often misdiagnosed as T2DM due to the insufficient knowledge differentiating between T2DM and T3cDM. The pathogenesis of T3cDM is explained which is often linked to the history of chronic pancreatitis, pancreatic cancer. Inflammation, and fibrosis in pancreatic tissue lead to damage both endocrine and exocrine functions, thus leading to insulin/glucagon insufficiency and pancreatic enzyme deficiency.
CONCLUSION: Future advancements should be accompanied by the establishment of a quick diagnostic tool through the understanding of potential biomarkers of the disease and newer treatments for better control of the diseased condition.
METHODOLOGY: Multiple approaches including assessing utilization and prices of insulins including biosimilars among six Asian countries and comparing the findings especially with other middle-income countries.
RESULTS: Typically, there was increasing use of long-acting insulin analogues among the selected Asian countries. This was especially the case enhanced by biosimilars in Bangladesh, India, and Malaysia reflecting their perceived benefits. However, there was limited use in Pakistan due to issues of affordability similar to a number of African countries. The high use of biosimilars in Bangladesh, India and Malaysia was helped by issues of affordability and local production. The limited use of biosimilars in Japan and Korea reflects limited price reductions and demand-side initiatives similar to a number of European countries.
CONCLUSIONS: Increasing use of long-acting insulin analogues across countries is welcomed, adding to the range of insulins available, which increasingly includes biosimilars. A number of activities are needed to enhance the use of long-acting insulin analogue biosimilars in Japan, Korea and Pakistan.