1. Toxicity evaluations of DDT, lindane, abate and carbaryl were carried out in the larvae of two wild Aedes aegypti strains from Kuala Lumpur and Klang. The Kuala Lumpur strain was more susceptible to the insecticides than the Klang strain. 2. The lethal toxicity time was also determined. The insecticides were found to take a longer time to exert their effect in the Klang strain as compared to the Kuala Lumpur strain. 3. Carboxylesterase activity was determined to be higher in the Kuala Lumpur strain, but glutathione transferase activities were higher in the Klang strain.
Bioassays (at generation G2) with a newly collected field population (designated CH3) of Plutella xylostella L. from farmers' fields in the Cameron Highlands, Malaysia, indicated resistance ratios of 813-, 79-, 171-, 498- and 1285-fold for indoxacarb, fipronil, spinosad, deltamethrin and Bacillus thuringiensis toxin Cry1Ac respectively compared with a laboratory susceptible population (Lab-UK). At G2 the field-derived population was divided into two subpopulations: one was selected (G2 to G7) with indoxacarb (indoxa-SEL), while the second was left unselected (UNSEL). A significant reduction in the resistance ratio for each compound was observed in UNSEL at G8. For indoxa-SEL, bioassays at G8 found that selection with indoxacarb gave a resistance ratio of 2594 compared with Lab-UK and of 90 compared with UNSEL. The toxicity of fipronil, spinosad and deltamethrin was not significantly different in indoxa-SEL at G8 compared with G2 but was significantly greater than UNSEL at G8. The toxicity of Cry1Ac was significantly reduced in indoxa-SEL at G8 compared with G2 but was also significantly greater than UNSEL at G8. This suggests that indoxacarb selection maintained resistance to these compounds in the indoxa-SEL population. Synergist studies indicated that resistance to indoxacarb in indoxa-SEL was esterase associated. Logit regression analysis of F1 reciprocal crosses between indoxa-SEL and Lab-UK indicated that resistance to indoxacarb was inherited as an autosomal, incompletely recessive (D(LC) = 0.35) trait. Tests of monogenic inheritance suggested that resistance to indoxacarb was controlled by a single locus.
Comparative DDT-susceptibility status and glutathion s-transferase (GST) activity of Malaysian Anopheles maculatus, Culex quinquefasciatus and Aedes aegypti was investigated to ascertain the role of this enzyme in DDT resistance. The standardised WHO dose-mortality bioassay tests were used to determine DDT susceptibility in these mosquitos, whilst GST microassay (Brogdon and Barber, 1990) was conducted to measure the activity of this enzyme in mosquito homogenate. It appeared that DDT susceptibility status of Malaysian mosquitos was not correlated with GST activity.