Displaying publications 1 - 20 of 64 in total

Abstract:
Sort:
  1. Kountouris P, Stephanou C, Lederer CW, Traeger-Synodinos J, Bento C, Harteveld CL, et al.
    Hum Mutat, 2022 Aug;43(8):1089-1096.
    PMID: 34510646 DOI: 10.1002/humu.24280
    Accurate and consistent interpretation of sequence variants is integral to the delivery of safe and reliable diagnostic genetic services. To standardize the interpretation process, in 2015, the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) published a joint guideline based on a set of shared standards for the classification of variants in Mendelian diseases. The generality of these standards and their subjective interpretation between laboratories has prompted efforts to reduce discordance of variant classifications, with a focus on the expert specification of the ACMG/AMP guidelines for individual genes or diseases. Herein, we describe our experience as a ClinGen Variant Curation Expert Panel to adapt the ACMG/AMP criteria for the classification of variants in three globin genes (HBB, HBA2, and HBA1) related to recessively inherited hemoglobinopathies, including five evidence categories, as use cases demonstrating the process of specification and the underlying rationale.
    Matched MeSH terms: Genome, Human*
  2. Tagore D, Aghakhanian F, Naidu R, Phipps ME, Basu A
    BMC Biol, 2021 03 29;19(1):61.
    PMID: 33781248 DOI: 10.1186/s12915-021-00981-x
    BACKGROUND: The demographic history of South and Southeast Asia (S&SEA) is complex and contentious, with multiple waves of human migration. Some of the earliest footfalls were of the ancestors of modern Austroasiatic (AA) language speakers. Understanding the history of the AA language family, comprising of over 150 languages and their speakers distributed across broad geographical region in isolated small populations of various sizes, can help shed light on the peopling of S&SEA. Here we investigated the genetic relatedness of two AA groups, their relationship with other ethno-linguistically distinct populations, and the relationship of these groups with ancient genomes of individuals living in S&SEA at different time periods, to infer about the demographic history of this region.

    RESULTS: We analyzed 1451 extant genomes, 189 AAs from India and Malaysia, and 43 ancient genomes from S&SEA. Population structure analysis reveals neither language nor geography appropriately correlates with genetic diversity. The inconsistency between "language and genetics" or "geography and genetics" can largely be attributed to ancient admixture with East Asian populations. We estimated a pre-Neolithic origin of AA language speakers, with shared ancestry between Indian and Malaysian populations until about 470 generations ago, contesting the existing model of Neolithic expansion of the AA culture. We observed a spatio-temporal transition in the genetic ancestry of SEA with genetic contribution from East Asia significantly increasing in the post-Neolithic period.

    CONCLUSION: Our study shows that contrary to assumptions in many previous studies and despite having linguistic commonality, Indian AAs have a distinct genomic structure compared to Malaysian AAs. This linguistic-genetic discordance is reflective of the complex history of population migration and admixture shaping the genomic landscape of S&SEA. We postulate that pre-Neolithic ancestors of today's AAs were widespread in S&SEA, and the fragmentation and dissipation of the population have largely been a resultant of multiple migrations of East Asian farmers during the Neolithic period. It also highlights the resilience of AAs in continuing to speak their language in spite of checkered population distribution and possible dominance from other linguistic groups.

    Matched MeSH terms: Genome, Human*
  3. Ranganathan S, Schönbach C, Kelso J, Rost B, Nathan S, Tan TW
    BMC Bioinformatics, 2011;12 Suppl 13:S1.
    PMID: 22372736 DOI: 10.1186/1471-2105-12-S13-S1
    The 2011 International Conference on Bioinformatics (InCoB) conference, which is the annual scientific conference of the Asia-Pacific Bioinformatics Network (APBioNet), is hosted by Kuala Lumpur, Malaysia, is co-organized with the first ISCB-Asia conference of the International Society for Computational Biology (ISCB). InCoB and the sequencing of the human genome are both celebrating their tenth anniversaries and InCoB's goalposts for the next decade, implementing standards in bioinformatics and globally distributed computational networks, will be discussed and adopted at this conference. Of the 49 manuscripts (selected from 104 submissions) accepted to BMC Genomics and BMC Bioinformatics conference supplements, 24 are featured in this issue, covering software tools, genome/proteome analysis, systems biology (networks, pathways, bioimaging) and drug discovery and design.
    Matched MeSH terms: Genome, Human*
  4. AlAama J, Smith TD, Lo A, Howard H, Kline AA, Lange M, et al.
    Hum Mutat, 2011 May;32(5):501-6.
    PMID: 21305654 DOI: 10.1002/humu.21463
    Genetic diseases are a pressing global health problem that requires comprehensive access to basic clinical and genetic data to counter. The creation of regional and international databases that can be easily accessed by clinicians and diagnostic labs will greatly improve our ability to accurately diagnose and treat patients with genetic disorders. The Human Variome Project is currently working in conjunction with human genetics societies to achieve this by establishing systems to collect every mutation reported by a diagnostic laboratory, clinic, or research laboratory in a country and store these within a national repository, or HVP Country Node. Nodes have already been initiated in Australia, Belgium, China, Egypt, Malaysia, and Kuwait. Each is examining how to systematically collect and share genetic, clinical, and biochemical information in a country-specific manner that is sensitive to local ethical and cultural issues. This article gathers cases of genetic data collection within countries and takes recommendations from the global community to develop a procedure for countries wishing to establish their own collection system as part of the Human Variome Project. We hope this may lead to standard practices to facilitate global collection of data and allow efficient use in clinical practice, research and therapy.
    Matched MeSH terms: Genome, Human/genetics*
  5. Maddirevula S, AlZahrani F, Anazi S, Almureikhi M, Ben-Omran T, Abdel-Salam GMH, et al.
    Genet Med, 2018 01;20(1):64-68.
    PMID: 28640246 DOI: 10.1038/gim.2017.78
    PurposeGenome-wide association studies (GWAS) have been instrumental to our understanding of the genetic risk determinants of complex traits. A common challenge in GWAS is the interpretation of signals, which are usually attributed to the genes closest to the polymorphic markers that display the strongest statistical association. Naturally occurring complete loss of function (knockout) of these genes in humans can inform GWAS interpretation by unmasking their deficiency state in a clinical context.MethodsWe exploited the unique population structure of Saudi Arabia to identify novel knockout events in genes previously highlighted in GWAS using combined autozygome/exome analysis.ResultsWe report five families with homozygous truncating mutations in genes that had only been linked to human disease through GWAS. The phenotypes observed in the natural knockouts for these genes (TRAF3IP2, FRMD3, RSRC1, BTBD9, and PXDNL) range from consistent with, to unrelated to, the previously reported GWAS phenotype.ConclusionWe expand the role of human knockouts in the medical annotation of the human genome, and show their potential value in informing the interpretation of GWAS of complex traits.
    Matched MeSH terms: Genome, Human*
  6. Chua EW, Maggo S, Kennedy MA
    Methods Mol Biol, 2017;1620:65-74.
    PMID: 28540699 DOI: 10.1007/978-1-4939-7060-5_3
    Polymerase chain reaction (PCR) is an oft-used preparatory technique in amplifying specific DNA regions for downstream analysis. The size of an amplicon was initially limited by errors in nucleotide polymerization and template deterioration during thermal cycling. A variant of PCR, designated long-range PCR, was devised to counter these drawbacks and enable the amplification of large fragments exceeding a few kb. In this chapter we describe a protocol for long-range PCR, which we have adopted to obtain products of 6.6, 7.2, 13, and 20 kb from human genomic DNA samples.
    Matched MeSH terms: Genome, Human/genetics*
  7. Arciero E, Kraaijenbrink T, Asan, Haber M, Mezzavilla M, Ayub Q, et al.
    Mol Biol Evol, 2018 Aug 01;35(8):1916-1933.
    PMID: 29796643 DOI: 10.1093/molbev/msy094
    We genotyped 738 individuals belonging to 49 populations from Nepal, Bhutan, North India, or Tibet at over 500,000 SNPs, and analyzed the genotypes in the context of available worldwide population data in order to investigate the demographic history of the region and the genetic adaptations to the harsh environment. The Himalayan populations resembled other South and East Asians, but in addition displayed their own specific ancestral component and showed strong population structure and genetic drift. We also found evidence for multiple admixture events involving Himalayan populations and South/East Asians between 200 and 2,000 years ago. In comparisons with available ancient genomes, the Himalayans, like other East and South Asian populations, showed similar genetic affinity to Eurasian hunter-gatherers (a 24,000-year-old Upper Palaeolithic Siberian), and the related Bronze Age Yamnaya. The high-altitude Himalayan populations all shared a specific ancestral component, suggesting that genetic adaptation to life at high altitude originated only once in this region and subsequently spread. Combining four approaches to identifying specific positively selected loci, we confirmed that the strongest signals of high-altitude adaptation were located near the Endothelial PAS domain-containing protein 1 and Egl-9 Family Hypoxia Inducible Factor 1 loci, and discovered eight additional robust signals of high-altitude adaptation, five of which have strong biological functional links to such adaptation. In conclusion, the demographic history of Himalayan populations is complex, with strong local differentiation, reflecting both genetic and cultural factors; these populations also display evidence of multiple genetic adaptations to high-altitude environments.
    Matched MeSH terms: Genome, Human*
  8. Atif A. B., Halim-Fikri A H, Zilfalil BA
    MyJurnal
    In the human genome, point variations are most common (Nachman & Crowell, 2000) and well understood. These variations, when existing in more than 1% of the population, is referred to as
    Single Nucleotide Polymorphism (SNP) and can fall in the coding region of a gene, non coding region or intergenic regions.
    Matched MeSH terms: Genome, Human
  9. Ahmed Adam MA, Tabana YM, Musa KB, Sandai DA
    Oncol Rep, 2017 Mar;37(3):1321-1336.
    PMID: 28184933 DOI: 10.3892/or.2017.5424
    The chemical nature of most of the mycotoxins makes them highly liposoluble compounds that can be absorbed from the site of exposure such as from the gastrointestinal and respiratory tract to the blood stream where it can be dissimilated throughout the body and reach different organs such as the liver and kidneys. Mycotoxins have a strong tendency and ability to penetrate the human and animal cells and reach the cellular genome where it causes a major mutagenic change in the nucleotide sequence which leads to strong and permanent defects in the genome. This defect will eventually be transcribed, translated and lead to the development of cancer. In this review, the chemical and physical nature of mycotoxins, the action of mycotoxins on the cellular genome and its effect on humans, mycotoxins and their carcinogenicity and mycotoxins research gaps are discussed, and new research areas are suggested. The research review posed various questions. What are the different mycotoxins that can cause cancer, what is the role of mycotoxins in causing cancer and what types of cancers can be caused by mycotoxins? These questions have been selected due to the significant increase in the mycotoxin contamination and the cancer incidence rate in the contemporary world. By revealing and understanding the role of mycotoxins in developing cancer, measures to reduce the risks and incidents of cancer could be taken.
    Matched MeSH terms: Genome, Human/drug effects*; Genome, Human/genetics
  10. S, MARAN, LEE, Y. Y., ZILFALIL BA, NOORIZAN AM
    MyJurnal
    Genome Wide Association (GWA) Studies of complex diseases represents a new paradigm in the
    post-genomic era. Since then, the eld of human genetics has been revolutionized by the GWA Studies approach (Yang and Hibberd 2009). Adding to this, the completion of human genome sequence had enabled a systemic identi cation of genetic loci that determines
    the etiology of complex diseases.
    Matched MeSH terms: Genome, Human
  11. Deng L, Pan Y, Wang Y, Chen H, Yuan K, Chen S, et al.
    Mol Biol Evol, 2022 Feb 03;39(2).
    PMID: 34940850 DOI: 10.1093/molbev/msab361
    Tropical indigenous peoples in Asia (TIA) attract much attention for their unique appearance, whereas their genetic history and adaptive evolution remain mysteries. We conducted a comprehensive study to characterize the genetic distinction and connection of broad geographical TIAs. Despite the diverse genetic makeup and large interarea genetic differentiation between the TIA groups, we identified a basal Asian ancestry (bASN) specifically shared by these populations. The bASN ancestry was relatively enriched in ancient Asian human genomes dated as early as ∼50,000 years before the present and diminished in more recent history. Notably, the bASN ancestry is unlikely to be derived from archaic hominins. Instead, we suggest it may be better modeled as a survived lineage of the initial peopling of Asia. Shared adaptations inherited from the ancient Asian ancestry were detected among the TIA groups (e.g., LIMS1 for hair morphology, and COL24A1 for bone formation), and they are enriched in neurological functions either at an identical locus (e.g., NKAIN3), or different loci in an identical gene (e.g., TENM4). The bASN ancestry could also have formed the substrate of the genetic architecture of the dark pigmentation observed in the TIA peoples. We hypothesize that phenotypic convergence of the dark pigmentation in TIAs could have resulted from parallel (e.g., DDB1/DAK) or genetic convergence driven by admixture (e.g., MTHFD1 and RAD18), new mutations (e.g., STK11), or notably purifying selection (e.g., MC1R). Our results provide new insights into the initial peopling of Asia and an advanced understanding of the phenotypic convergence of the TIA peoples.
    Matched MeSH terms: Genome, Human
  12. Dennin RH
    Malays J Med Sci, 2018 Mar;25(2):20-26.
    PMID: 30918452 DOI: 10.21315/mjms2018.25.2.3
    Extrachromosomal (ec) DNA in eukaryotic cells has been known for decades. The structures described range from linear double stranded (ds) DNA to circular dsDNA, distinct from mitochondrial (mt) DNA. The sizes of circular forms are described from some hundred base pairs (bp) up to more than 150 kbp. The number of molecules per cell ranges from several hundred to a thousand. Semi-quantitative determinations of circular dsDNA show proportions as high as several percentages of the total DNA per cell. These ecDNA fractions harbor sequences that are known to be present in chromosomal DNA (chrDNA) too. Sequencing projects on, for example the human genome, have to take into account the ecDNA sequences which are simultaneously ascertained; corrections cannot be performed retrospectively. Concerning the results of sequencings derived from extracted whole DNA: if the ecDNA fractions contained therein are not taken into account, erroneous conclusions at the chromosomal level may result.
    Matched MeSH terms: Genome, Human
  13. Mokhtar SS, Marshall CR, Phipps ME, Thiruvahindrapuram B, Lionel AC, Scherer SW, et al.
    PLoS One, 2014;9(6):e100371.
    PMID: 24956385 DOI: 10.1371/journal.pone.0100371
    Copy number variation (CNV) has been recognized as a major contributor to human genome diversity. It plays an important role in determining phenotypes and has been associated with a number of common and complex diseases. However CNV data from diverse populations is still limited. Here we report the first investigation of CNV in the indigenous populations from Peninsular Malaysia. We genotyped 34 Negrito genomes from Peninsular Malaysia using the Affymetrix SNP 6.0 microarray and identified 48 putative novel CNVs, consisting of 24 gains and 24 losses, of which 5 were identified in at least 2 unrelated samples. These CNVs appear unique to the Negrito population and were absent in the DGV, HapMap3 and Singapore Genome Variation Project (SGVP) datasets. Analysis of gene ontology revealed that genes within these CNVs were enriched in the immune system (GO:0002376), response to stimulus mechanisms (GO:0050896), the metabolic pathways (GO:0001852), as well as regulation of transcription (GO:0006355). Copy number gains in CNV regions (CNVRs) enriched with genes were significantly higher than the losses (P value <0.001). In view of the small population size, relative isolation and semi-nomadic lifestyles of this community, we speculate that these CNVs may be attributed to recent local adaptation of Negritos from Peninsular Malaysia.
    Matched MeSH terms: Genome, Human/genetics*
  14. Tan NH, Palmer R, Wang R
    J Obstet Gynaecol Res, 2010 Feb;36(1):19-26.
    PMID: 20178523 DOI: 10.1111/j.1447-0756.2009.01110.x
    Array-based comparative genomic hybridization (array CGH) is a new molecular technique that has the potential to revolutionize cytogenetics. However, use of high resolution array CGH in the clinical setting is plagued by the problem of widespread copy number variations (CNV) in the human genome. Constitutional microarray, containing only clones that interrogate regions of known constitutional syndromes, may circumvent the dilemma of detecting CNV of unknown clinical significance.
    Matched MeSH terms: Genome, Human*
  15. Pinotti T, Bergström A, Geppert M, Bawn M, Ohasi D, Shi W, et al.
    Curr Biol, 2019 01 07;29(1):149-157.e3.
    PMID: 30581024 DOI: 10.1016/j.cub.2018.11.029
    The Americas were the last inhabitable continents to be occupied by humans, with a growing multidisciplinary consensus for entry 15-25 thousand years ago (kya) from northeast Asia via the former Beringia land bridge [1-4]. Autosomal DNA analyses have dated the separation of Native American ancestors from the Asian gene pool to 23 kya or later [5, 6] and mtDNA analyses to ∼25 kya [7], followed by isolation ("Beringian Standstill" [8, 9]) for 2.4-9 ky and then a rapid expansion throughout the Americas. Here, we present a calibrated sequence-based analysis of 222 Native American and relevant Eurasian Y chromosomes (24 new) from haplogroups Q and C [10], with four major conclusions. First, we identify three to four independent lineages as autochthonous and likely founders: the major Q-M3 and rarer Q-CTS1780 present throughout the Americas, the very rare C3-MPB373 in South America, and possibly the C3-P39/Z30536 in North America. Second, from the divergence times and Eurasian/American distribution of lineages, we estimate a Beringian Standstill duration of 2.7 ky or 4.6 ky, according to alternative models, and entry south of the ice sheet after 19.5 kya. Third, we describe the star-like expansion of Q-M848 (within Q-M3) starting at 15 kya [11] in the Americas, followed by establishment of substantial spatial structure in South America by 12 kya. Fourth, the deep branches of the Q-CTS1780 lineage present at low frequencies throughout the Americas today [12] may reflect a separate out-of-Beringia dispersal after the melting of the glaciers at the end of the Pleistocene.
    Matched MeSH terms: Genome, Human/genetics
  16. Yew CW, Lu D, Deng L, Wong LP, Ong RT, Lu Y, et al.
    Hum Genet, 2018 Feb;137(2):161-173.
    PMID: 29383489 DOI: 10.1007/s00439-018-1869-0
    Southeast Asia (SEA) is enriched with a complex history of peopling. Malaysia, which is located at the crossroads of SEA, has been recognized as one of the hubs for early human migration. To unravel the genomic complexity of the native inhabitants of Malaysia, we sequenced 12 samples from 3 indigenous populations from Peninsular Malaysia and 4 native populations from North Borneo to a high coverage of 28-37×. We showed that the Negritos from Peninsular Malaysia shared a common ancestor with the East Asians, but exhibited some level of gene flow from South Asia, while the North Borneo populations exhibited closer genetic affinity towards East Asians than the Malays. The analysis of time of divergence suggested that ancestors of Negrito were the earliest settlers in the Malay Peninsula, whom first separated from the Papuans ~ 50-33 thousand years ago (kya), followed by East Asian (~ 40-15 kya), while the divergence time frame between North Borneo and East Asia populations predates the Austronesian expansion period implies a possible pre-Neolithic colonization. Substantial Neanderthal ancestry was confirmed in our genomes, as was observed in other East Asians. However, no significant difference was observed, in terms of the proportion of Denisovan gene flow into these native inhabitants from Malaysia. Judging from the similar amount of introgression in the Southeast Asians and East Asians, our findings suggest that the Denisovan gene flow may have occurred before the divergence of these populations and that the shared similarities are likely an ancestral component.
    Matched MeSH terms: Genome, Human/genetics*
  17. McColl H, Racimo F, Vinner L, Demeter F, Gakuhari T, Moreno-Mayar JV, et al.
    Science, 2018 07 06;361(6397):88-92.
    PMID: 29976827 DOI: 10.1126/science.aat3628
    The human occupation history of Southeast Asia (SEA) remains heavily debated. Current evidence suggests that SEA was occupied by Hòabìnhian hunter-gatherers until ~4000 years ago, when farming economies developed and expanded, restricting foraging groups to remote habitats. Some argue that agricultural development was indigenous; others favor the "two-layer" hypothesis that posits a southward expansion of farmers giving rise to present-day Southeast Asian genetic diversity. By sequencing 26 ancient human genomes (25 from SEA, 1 Japanese Jōmon), we show that neither interpretation fits the complexity of Southeast Asian history: Both Hòabìnhian hunter-gatherers and East Asian farmers contributed to current Southeast Asian diversity, with further migrations affecting island SEA and Vietnam. Our results help resolve one of the long-standing controversies in Southeast Asian prehistory.
    Matched MeSH terms: Genome, Human*
  18. Deng L, Lou H, Zhang X, Thiruvahindrapuram B, Lu D, Marshall CR, et al.
    BMC Genomics, 2019 Nov 12;20(1):842.
    PMID: 31718558 DOI: 10.1186/s12864-019-6226-8
    BACKGROUND: Recent advances in genomic technologies have facilitated genome-wide investigation of human genetic variations. However, most efforts have focused on the major populations, yet trio genomes of indigenous populations from Southeast Asia have been under-investigated.

    RESULTS: We analyzed the whole-genome deep sequencing data (~ 30×) of five native trios from Peninsular Malaysia and North Borneo, and characterized the genomic variants, including single nucleotide variants (SNVs), small insertions and deletions (indels) and copy number variants (CNVs). We discovered approximately 6.9 million SNVs, 1.2 million indels, and 9000 CNVs in the 15 samples, of which 2.7% SNVs, 2.3% indels and 22% CNVs were novel, implying the insufficient coverage of population diversity in existing databases. We identified a higher proportion of novel variants in the Orang Asli (OA) samples, i.e., the indigenous people from Peninsular Malaysia, than that of the North Bornean (NB) samples, likely due to more complex demographic history and long-time isolation of the OA groups. We used the pedigree information to identify de novo variants and estimated the autosomal mutation rates to be 0.81 × 10- 8 - 1.33 × 10- 8, 1.0 × 10- 9 - 2.9 × 10- 9, and ~ 0.001 per site per generation for SNVs, indels, and CNVs, respectively. The trio-genomes also allowed for haplotype phasing with high accuracy, which serves as references to the future genomic studies of OA and NB populations. In addition, high-frequency inherited CNVs specific to OA or NB were identified. One example is a 50-kb duplication in DEFA1B detected only in the Negrito trios, implying plausible effects on host defense against the exposure of diverse microbial in tropical rainforest environment of these hunter-gatherers. The CNVs shared between OA and NB groups were much fewer than those specific to each group. Nevertheless, we identified a 142-kb duplication in AMY1A in all the 15 samples, and this gene is associated with the high-starch diet. Moreover, novel insertions shared with archaic hominids were identified in our samples.

    CONCLUSION: Our study presents a full catalogue of the genome variants of the native Malaysian populations, which is a complement of the genome diversity in Southeast Asians. It implies specific population history of the native inhabitants, and demonstrated the necessity of more genome sequencing efforts on the multi-ethnic native groups of Malaysia and Southeast Asia.

    Matched MeSH terms: Genome, Human*
  19. Chaisson MJP, Sanders AD, Zhao X, Malhotra A, Porubsky D, Rausch T, et al.
    Nat Commun, 2019 04 16;10(1):1784.
    PMID: 30992455 DOI: 10.1038/s41467-018-08148-z
    The incomplete identification of structural variants (SVs) from whole-genome sequencing data limits studies of human genetic diversity and disease association. Here, we apply a suite of long-read, short-read, strand-specific sequencing technologies, optical mapping, and variant discovery algorithms to comprehensively analyze three trios to define the full spectrum of human genetic variation in a haplotype-resolved manner. We identify 818,054 indel variants (<50 bp) and 27,622 SVs (≥50 bp) per genome. We also discover 156 inversions per genome and 58 of the inversions intersect with the critical regions of recurrent microdeletion and microduplication syndromes. Taken together, our SV callsets represent a three to sevenfold increase in SV detection compared to most standard high-throughput sequencing studies, including those from the 1000 Genomes Project. The methods and the dataset presented serve as a gold standard for the scientific community allowing us to make recommendations for maximizing structural variation sensitivity for future genome sequencing studies.
    Matched MeSH terms: Genome, Human/genetics*
  20. Jinam TA, Phipps ME, Aghakhanian F, Majumder PP, Datar F, Stoneking M, et al.
    Genome Biol Evol, 2017 08 01;9(8):2013-2022.
    PMID: 28854687 DOI: 10.1093/gbe/evx118
    Human presence in Southeast Asia dates back to at least 40,000 years ago, when the current islands formed a continental shelf called Sundaland. In the Philippine Islands, Peninsular Malaysia, and Andaman Islands, there exist indigenous groups collectively called Negritos whose ancestry can be traced to the "First Sundaland People." To understand the relationship between these Negrito groups and their demographic histories, we generated genome-wide single nucleotide polymorphism data in the Philippine Negritos and compared them with existing data from other populations. Phylogenetic tree analyses show that Negritos are basal to other East and Southeast Asians, and that they diverged from West Eurasians at least 38,000 years ago. We also found relatively high traces of Denisovan admixture in the Philippine Negritos, but not in the Malaysian and Andamanese groups, suggesting independent introgression and/or parallel losses involving Denisovan introgressed regions. Shared genetic loci between all three Negrito groups could be related to skin pigmentation, height, facial morphology and malarial resistance. These results show the unique status of Negrito groups as descended from the First Sundaland People.
    Matched MeSH terms: Genome, Human*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links