Displaying all 6 publications

Abstract:
Sort:
  1. Shahzad S, Batool Z, Afzal A, Haider S
    Metab Brain Dis, 2022 Dec;37(8):2793-2805.
    PMID: 36152087 DOI: 10.1007/s11011-022-01090-6
    Quercetin, a polyphenolic compound found in a variety of plant products possesses various biological activities and beneficial effects on human health. Schizophrenia (SZ) is one of the neuropsychiatric disorders in human beings with rapid mortality and intense morbidity which can be treated with antipsychotics, but these commercial drugs exert adverse effects and have less efficacy to treat the full spectrum of SZ. The present study was conducted to evaluate neuroprotective effects of quercetin in the preventive and therapeutic treatment of SZ. Quercetin was administered as pre- and post-regimens at the dose of 50 mg/kg in dizocilpine-induced SZ rat model for two weeks. Rats were then subjected for the assessment of different behaviors followed by biochemical, neurochemical, and inflammatory marker analyses. The present findings revealed that quercetin significantly reverses the effects of dizocilpine-induced psychosis-like symptoms in all behavioral assessments as well as it also combats oxidative stress. This flavonoid also regulates dopaminergic, serotonergic, and glutamatergic neurotransmission. A profound effect on inflammatory cytokines and decreased %DNA fragmentation was also observed following the administration of quercetin. The findings suggest that quercetin can be considered as a preventive as well as therapeutic strategy to attenuate oxidative stress and cytokine toxicity, regulate neurotransmission, and prevent enhanced DNA fragmentation that can lead to the amelioration of psychosis-like symptoms in SZ.
    Matched MeSH terms: Dizocilpine Maleate/pharmacology
  2. Hsu CK, Chang SJ, Lim LY, Chang HH, Shei-Dei Yang S
    J Vasc Res, 2023;60(3):137-147.
    PMID: 37285812 DOI: 10.1159/000529916
    N-methyl-D-aspartate (NMDA) receptors were found to be dysfunctional in hypertensive rats. Methyl palmitate (MP) has been shown to diminish the nicotine-induced increase in blood flow in the brainstem. The aim of this study was to determine how MP modulated NMDA-induced increased regional cerebral blood flow (rCBF) in normotensive (WKY), spontaneously hypertensive (SHR), and renovascular hypertensive (RHR) rats. The increase in rCBF after the topical application of experimental drugs was measured using laser Doppler flowmetry. Topical NMDA application induced an MK-801-sensitive increase in rCBF in anesthetized WKY rats, which was inhibited by MP pretreatments. This inhibition was prevented by pretreatment with chelerythrine (a PKC inhibitor). The NMDA-induced increase in rCBF was also inhibited by the PKC activator in a concentration-dependent manner. Neither MP nor MK-801 affected the increase in rCBF induced by the topical application of acetylcholine or sodium nitroprusside. Topical application of MP to the parietal cortex of SHRs, on the other hand, increased basal rCBF slightly but significantly. MP enhanced the NMDA-induced increase in rCBF in SHRs and RHRs. These results suggested that MP had a dual effect on the modulation of rCBF. MP appears to play a significant physiological role in CBF regulation.
    Matched MeSH terms: Dizocilpine Maleate/pharmacology
  3. Wang Z, Wu T, Hu H, Alabed AAA, Cui G, Sun L, et al.
    J Psychiatry Neurosci, 2024;49(4):E265-E281.
    PMID: 39209459 DOI: 10.1503/jpn.230118
    BACKGROUND: Schizophrenia is characterized by a complex interplay of genetic and environmental factors, leading to alterations in various molecular pathways that may contribute to its pathogenesis. Recent studies have shown that exosomal microRNAs could play essential roles in various brain disorders; thus, we sought to explore the potential molecular mechanisms through which microRNAs in plasma exosomes are involved in schizophrenia.

    METHODS: We obtained sequencing data sets (SUB12404730, SUB12422862, and SUB12421357) and transcriptome sequencing data sets (GSE111708, GSE108925, and GSE18981) from mouse models of schizophrenia using the Sequence Read Archive and the Gene Expression Omnibus databases, respectively. We performed differential expression analysis on mRNA to identify differentially expressed genes. We conducted Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses to determine differentially expressed genes. Subsequently, we determined the intersection of differentially expressed microRNAs in plasma exosomes and in prefrontal cortex tissue. We retrieved downstream target genes of mmu-miR-146a-5p from TargetScan and used Cytoscape to visualize and map the microRNA-target gene regulatory network. We conducted in vivo experiments using MK-801-induced mouse schizophrenia models and in vitro experiments using cultured mouse neurons. The role of plasma exosomal miR-146a-5p in schizophrenia was validated using a cell counting kit, detection of lactate dehydrogenase, dual-luciferase assay, quantitative reverse transcription polymerase chain reaction, and Western blot analysis.

    RESULTS: Differential genes were mainly enriched in synaptic regulation-related functions and pathways and were associated with neuronal degeneration. We found that mmu-miR-146a-5p was highly expressed in both prefrontal cortical tissue and plasma exosomes, which may be transferred to lobe cortical vertebral neurons, leading to the synergistic dysregulation of gene network functions and, therefore, promoting schizophrenia development. We found that mmu-miR-146a-5p may inhibit the Notch signalling pathway-mediated synaptic activity of mouse pyramidal neurons in the lobe cortex by targeting NOTCH1, which in turn could promote the onset and development of schizophrenia in mice.

    LIMITATIONS: The study's findings are based on animal models and in vitro experiments, which may not fully replicate the complexity of human schizophrenia.

    CONCLUSION: Our findings suggest that mmu-miR-146a-5p in plasma-derived exosomes may play an important role in the pathogenesis of schizophrenia. Our results provide new insights into the underlying molecular mechanisms of the disease.

    Matched MeSH terms: Dizocilpine Maleate/pharmacology
  4. Ip YK, Leong MW, Sim MY, Goh GS, Wong WP, Chew SF
    J Exp Biol, 2005 May;208(Pt 10):1993-2004.
    PMID: 15879078
    The objective of this study was to elucidate if chronic and acute ammonia intoxication in mudskippers, Periophthalmodon schlosseri and Boleophthalmus boddaerti, were associated with high levels of ammonia and/or glutamine in their brains, and if acute ammonia intoxication could be prevented by the administration of methionine sulfoximine [MSO; an inhibitor of glutamine synthetase (GS)] or MK801 [an antagonist of N-methyl D-aspartate type glutamate (NMDA) receptors]. For P. schlosseri and B. boddaerti exposed to sublethal concentrations (100 and 8 mmol l(-1) NH4Cl, respectively, at pH 7.0) of environmental ammonia for 4 days, brain ammonia contents increased drastically during the first 24 h, and they reached 18 and 14.5 micromol g(-1), respectively, at hour 96. Simultaneously, there were increases in brain glutamine contents, but brain glutamate contents were unchanged. Because glutamine accumulated to exceptionally high levels in brains of P. schlosseri (29.8 micromol g(-1)) and B. boddaerti (12.1 micromol g(-1)) without causing death, it can be concluded that these two mudskippers could ameliorate those problems associated with glutamine synthesis and accumulation as observed in patients suffering from hyperammonemia. P. schlosseri and B. boddaerti could tolerate high doses of ammonium acetate (CH3COONH4) injected into their peritoneal cavities, with 24 h LC50 of 15.6 and 12.3 micromol g(-1) fish, respectively. After the injection with a sublethal dose of CH3COONH4 (8 micromol g(-1) fish), there were significant increases in ammonia (5.11 and 8.36 micromol g(-1), respectively) and glutamine (4.22 and 3.54 micromol g(-1), respectively) levels in their brains at hour 0.5, but these levels returned to normal at hour 24. By contrast, for P. schlosseri and B. boddaerti that succumbed within 15-50 min to a dose of CH3COONH4 (15 and 12 micromol g(-1) fish, respectively) close to the LC50 values, the ammonia contents in the brains reached much higher levels (12.8 and 14.9 micromol g(-1), respectively), while the glutamine level remained relatively low (3.93 and 2.67 micromol g(-1), respectively). Thus, glutamine synthesis and accumulation in the brain was not the major cause of death in these two mudskippers confronted with acute ammonia toxicity. Indeed, MSO, at a dosage (100 microg g(-1) fish) protective for rats, did not protect B. boddaerti against acute ammonia toxicity, although it was an inhibitor of GS activities from the brains of both mudskippers. In the case of P. schlosseri, MSO only prolonged the time to death but did not reduce the mortality rate (100%). In addition, MK801 (2 microg g(-1) fish) had no protective effect on P. schlosseri and B. boddaerti injected with a lethal dose of CH3COONH4, indicating that activation of NMDA receptors was not the major cause of death during acute ammonia intoxication. Thus, it can be concluded that there are major differences in mechanisms of chronic and acute ammonia toxicity between brains of these two mudskippers and mammalian brains.
    Matched MeSH terms: Dizocilpine Maleate/pharmacology
  5. Pui Ping C, Akhtar MN, Israf DA, Perimal EK, Sulaiman MR
    Molecules, 2020 Nov 18;25(22).
    PMID: 33217904 DOI: 10.3390/molecules25225385
    The perception of pain caused by inflammation serves as a warning sign to avoid further injury. The generation and transmission of pain impulses involves various pathways and receptors. Cardamonin isolated from Boesenbergia rotunda (L.) Mansf. has been reported to exert antinociceptive effects in thermal and mechanical pain models; however, the precise mechanism has yet to be examined. The present study investigated the possible mechanisms involved in the antinociceptive activity of cardamonin on protein kinase C, N-methyl-d-aspartate (NMDA) and non-NMDA glutamate receptors, l-arginine/cyclic guanosine monophosphate (cGMP) mechanism, as well as the ATP-sensitive potassium (K+) channel. Cardamonin was administered to the animals intra-peritoneally. Present findings showed that cardamonin significantly inhibited pain elicited by intraplantar injection of phorbol 12-myristate 13-acetate (PMA, a protein kinase C activator) with calculated mean ED50 of 2.0 mg/kg (0.9-4.5 mg/kg). The study presented that pre-treatment with MK-801 (NMDA receptor antagonist) and NBQX (non-NMDA receptor antagonist) significantly modulates the antinociceptive activity of cardamonin at 3 mg/kg when tested with glutamate-induced paw licking test. Pre-treatment with l-arginine (a nitric oxide precursor), ODQ (selective inhibitor of soluble guanylyl cyclase) and glibenclamide (ATP-sensitive K+ channel inhibitor) significantly enhanced the antinociception produced by cardamonin. In conclusion, the present findings showed that the antinociceptive activity of cardamonin might involve the modulation of PKC activity, NMDA and non-NMDA glutamate receptors, l-arginine/nitric oxide/cGMP pathway and ATP-sensitive K+ channel.
    Matched MeSH terms: Dizocilpine Maleate
  6. Lah MHC, Reza F, Begum T, Abdullah JM
    Malays J Med Sci, 2018 May;25(3):27-39.
    PMID: 30899185 MyJurnal DOI: 10.21315/mjms2018.25.3.4
    Background: Previous studies from animal models have shown that pre-synaptic NMDA receptors (preNMDARs) are present in the cortex, but the role of inhibition mediated by preNMDARs during epileptogenesis remains unclear. In this study, we wanted to observe the changes in GABAergic inhibition through preNMDARs in sensory-motor and visual cortical pyramidal neurons after pilocarpine-induced status epilepticus.

    Methods: Using a pilocarpine-induced epileptic mouse model, sensory-motor and visual cortical slices were prepared, and the whole-cell patch clamp technique was used to record spontaneous inhibitory post-synaptic currents (sIPSCs).

    Results: The primary finding was that the mean amplitude of sIPSC from the sensory-motor cortex increased significantly in epileptic mice when the recording pipette contained MK-801 compared to control mice, whereas the mean sIPSC frequency was not significantly different, indicating that post-synaptic mechanisms are involved. However, there was no significant pre-synaptic inhibition through preNMDARs in the acute brain slices from pilocarpine-induced epileptic mice.

    Conclusion: In the acute case of epilepsy, a compensatory mechanism of post-synaptic inhibition, possibly from ambient GABA, was observed through changes in the amplitude without significant changes in the frequency of sIPSC compared to control mice. The role of preNMDAR-mediated inhibition in epileptogenesis during the chronic condition or in the juvenile stage warrants further investigation.

    Matched MeSH terms: Dizocilpine Maleate
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links