Displaying all 6 publications

Abstract:
Sort:
  1. Nimmo IC, Barbrook AC, Lassadi I, Chen JE, Geisler K, Smith AG, et al.
    Elife, 2019 07 18;8.
    PMID: 31317866 DOI: 10.7554/eLife.45292
    Coral reefs are some of the most important and ecologically diverse marine environments. At the base of the reef ecosystem are dinoflagellate algae, which live symbiotically within coral cells. Efforts to understand the relationship between alga and coral have been greatly hampered by the lack of an appropriate dinoflagellate genetic transformation technology. By making use of the plasmid-like fragmented chloroplast genome, we have introduced novel genetic material into the dinoflagellate chloroplast genome. We have shown that the introduced genes are expressed and confer the expected phenotypes. Genetically modified cultures have been grown for 1 year with subculturing, maintaining the introduced genes and phenotypes. This indicates that cells continue to divide after transformation and that the transformation is stable. This is the first report of stable chloroplast transformation in dinoflagellate algae.
    Matched MeSH terms: Dinoflagellida/growth & development
  2. Lau WLS, Law IK, Liow GR, Hii KS, Usup G, Lim PT, et al.
    Harmful Algae, 2017 12;70:52-63.
    PMID: 29169568 DOI: 10.1016/j.hal.2017.10.006
    In 2015, a remarkably high density bloom of Alexandrium minutum occurred in Sungai Geting, a semi-enclosed lagoon situated in the northeast of Peninsular Malaysia, causing severe discoloration and contaminated the benthic clams (Polymesoda). Plankton and water samples were collected to investigate the mechanisms of bloom development of this toxic species. Analysis of bloom samples using flow cytometry indicated that the bloom was initiated by the process of active excystment, as planomycetes (>4C cells) were observed in the early stage of the bloom. Increase in planozygotes (2C cells) was evident during the middle stage of the bloom, coinciding with an abrupt decrease in salinity and increase of temperature. The bloom was sustained through the combination of binary division of vegetative cells, division of planozygotes, and cyst germination through continuous excystment. Nutrient depletion followed by precipitation subsequently caused the bloom to terminate. This study provides the first continuous record of in situ life-cycle stages of a natural bloom population of A. minutum through a complete bloom cycle. The event has provided a fundamental understanding of the pelagic life-cycle stages of this tropical dinoflagellate, and demonstrated a unique bloom development characteristic shared among toxic Alexandrium species in coastal embayments.
    Matched MeSH terms: Dinoflagellida/growth & development*
  3. Lim PT, Ogata T
    Toxicon, 2005 May;45(6):699-710.
    PMID: 15804519
    Four tropical PSP toxins-producing dinoflagellates, Alexandrium minutum, Alexandrium tamiyavanichii, Alexandrium tamarense and Alexandrium peruvianum from Malaysian waters were studied to investigate the influences of salinity on growth and toxin production. Experiments were conducted on constant temperature 25 degrees C, 140 microE mol m(-2) s(-1) and under 14:10 light:dark photo-cycle with salinity ranged from 2 to 30 psu. The PSP-toxin congeners, GTX 1-6, STX, dcSTX, NEO and C1-C2 were analysed by high performance liquid chromatography. Salinity tolerance of the four species in decreasing order is A. minutum>A. peruvianum>A. tamarense>A. tamiyavanichii. Specific growth rates and maximum densities varied among these species with A. minutum recorded as the highest, 0.5 day(-1) and 6 x 10(4) cells L(-1). Toxin content decreased with elevated salinities in A. minutum, the highest toxin content was about 12 fmole cell(-1) at 5 psu. In A. tamiyavanichii, toxin content peaked at optimal growth salinity (20 and 25 psu). Toxin content of A. tamarense, somehow peaked at sub-optimal growth salinity (15 and 30 psu). Results of this study implied that salinity fluctuation not only influenced the growth physiology but also toxin production of these species.
    Matched MeSH terms: Dinoflagellida/growth & development*
  4. Hii KS, Lim PT, Kon NF, Usup G, Gu H, Leaw CP
    Gene, 2019 Aug 30;711:143950.
    PMID: 31255736 DOI: 10.1016/j.gene.2019.143950
    The marine dinoflagellate Alexandrium minutum is known to produce saxitoxins that cause paralytic shellfish poisoning in human worldwide through consumption of the contaminated shellfish mollusks. Despite numerous studies on the growth physiology and saxitoxin production of this species, the knowledge on the molecular basis of nutrient uptakes in relation to toxin production in this species is limited. In this study, relative expressions of the high-affinity transporter genes of nitrate, ammonium, and phosphate (AmNrt2, AmAmt1 and AmPiPT1) and the assimilation genes, nitrate reductase (AmNas), glutamine synthase (AmGSIII) and carbamoyl phosphate synthase (AmCPSII) from A. minutum were studied in batch clonal culture condition with two nitrogen sources (nitrate: NO3- or ammonium: NH4+) under different N:P ratios (high-P: N:P of 14 and 16, and low-P: N:P of 155). The expression of AmAmt1 was suppressed in excess NH4+-grown condition but was not observed in AmNrt2 and AmNas. Expressions of AmAmt1, AmNrt2, AmNas, AmGSIII, AmCPSII, and AmPiPT1 were high in P-deficient condition, showing that A. minutum is likely to take up nutrients for growth under P-stress condition. Conversely, relative expression of AmCPSII was incongruent with cell growth, but was well correlated with toxin quota, suggesting that the gene might involve in arginine metabolism and related toxin production pathway. The expression of AmGSIII is found coincided with higher toxin production and is believed to involve in mechanism to detoxify the cells from excess ammonium stress. The gene regulation observed in this study has provided better insights into the ecophysiology of A. minutum in relation to its adaptive strategies in unfavorable environments.
    Matched MeSH terms: Dinoflagellida/growth & development*
  5. Nascimento SM, Mendes MCQ, Menezes M, Rodríguez F, Alves-de-Souza C, Branco S, et al.
    Harmful Algae, 2017 12;70:73-89.
    PMID: 29169570 DOI: 10.1016/j.hal.2017.11.001
    A new species of toxic benthic dinoflagellate is described based on laboratory cultures isolated from two locations from Brazil, Rio de Janeiro and Bahia. The morphology was studied with SEM and LM. Cells are elliptical in right thecal view and flat. They are 37-44μm long and 29-36μm wide. The right thecal plate has a V shaped indentation where six platelets can be identified. The thecal surface of both thecal plates is smooth and has round or kidney shaped and uniformly distributed pores except in the central area of the cell, and a line of marginal pores. Some cells present an elongated depression on the central area of the apical part of the right thecal plate. Prorocentrum caipirignum is similar to Prorocentrum lima in its morphology, but can be differentiated by the general cell shape, being elliptical while P. lima is ovoid. In the phylogenetic trees based on ITS and LSU rDNA sequences, the P. caipirignum clade appears close to the clades of P. lima and Prorocentrum hoffmannianum. The Brazilian strains of P. caipirignum formed a clade with strains from Cuba, Hainan Island and Malaysia and it is therefore likely that this new species has a broad tropical distribution. Prorocentrum caipirignum is a toxic species that produces okadaic acid and the fast acting toxin prorocentrolide.
    Matched MeSH terms: Dinoflagellida/growth & development*
  6. Usup G, Kulis DM, Anderson DM
    Nat. Toxins, 1994;2(5):254-62.
    PMID: 7866660
    Toxin production of a Malaysian isolate of the toxic red tide dinoflagellate Pyrodinium bahamense var. compressum was investigated at various stages of the batch culture growth cycle and under growth conditions affected by temperature, salinity, and light intensity variations. In all the experiments conducted, only 5 toxins were ever detected. Neosaxitoxin (NEO) and gonyautoxin V (GTX5) made up 80 mole percent or more of the cellular toxin content and saxitoxin (STX), GTX6 and decarbamoylsaxitoxin (dcSTX) made up the remainder. No gonyautoxins I-IV or C toxins were ever detected. In nutrient-replete batch cultures, toxin content rapidly peaked during early exponential phase and just as rapidly declined prior to the onset of plateau phase. Temperature had a marked effect on toxin content, which increased 3-fold as the temperature decreased from the optimum of 28 degrees C to 22 degrees C. Toxin content was constant at salinities of 24% or higher, but increased 3-fold at 20%. Toxin content decreased 2-fold and chlorophyll content increased 3-fold when light intensity was reduced from 90 to 15 microE m-2 s-1. This accompanied a 30% decrease in growth rate. Toxin composition (mole % individual toxin cell-1) remained constant throughout the course of the nutrient-replete culture and during growth at various salinities, but varied significantly with temperature and light intensity changes. At 22 degrees C, GTX5 was 25 mole % and NEO was 65 mole %, while at 34 degrees C, GTX5 increased to 55 mole % and NEO decreased proportionally to 40 mole %. When light intensity was reduced from 90 to 15 microE m-2 s-1, NEO decreased from 55 to 38 mole %, while GTX5 increased from 40 to 58 mole %. These data suggest that low light and high temperature both somehow enhance sulfo-transferase activity.(ABSTRACT TRUNCATED AT 250 WORDS)
    Matched MeSH terms: Dinoflagellida/growth & development*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links