Parrotia subaequalis, an endangered Tertiary relict tree native to China and a member of the Hamamelidaceae family, is one of several host plant species in this family that exhibit unique ecological habits, such as gall formation. Tree galls are the results of complex interactions between gall-inducing insects and their host plant organs. The formation of galls may serve to protect other regions of the plant from potential damage, often through the production of phytoalexins. In this study, a preliminary investigation was carried out on the metabolites of the 90% MeOH extract derived from the closed spherical galls on the twigs of P. subaequalis. Consequently, nine previously undescribed benzofuran-type and dibenzofuran-type phytoalexins (parrotiagallols A-I, 1-9, respectively) were isolated and characterized, along with several known miscellaneous metabolites (10-17). Their chemical structures and absolute configurations were elucidated using spectroscopic methods, a combination of calculated and experimental electronic circular dichroism data, and single crystal X-ray diffraction analyses. Among these compounds, 1 and 2 are identified as neolignan derivatives, while compounds 3-5 are classified as 9,10-dinorneolignans. Compound 6 represents a rare 2,3-seco-neolignan, and compounds 7-9 are dihydroxy-dimethyl-dibenzofuran derivatives. Parrotiagallol A (1) showed considerable antibacterial activity against Staphylococcus aureus, with an MIC value of 14 μM. Additionally, parrotiagallol E (5) and methyl gallate (17) exhibited inhibitory effects against ATP-citrate lyase (ACL), a potential therapeutic target for hyperlipidemia, with IC50 values of 5.1 and 9.8 μM, respectively. The findings underscore that galls not only serve as physical defense barriers but also benefit from the chemical defense system of the host plants. These insights provide avenues for exploring potential new therapeutic agents for S. aureus infections and ACL-related diseases, while also promoting scientific conservation strategies for P. subaequalis.
Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are toxic compounds derived from anthropogenic sources that stay in the environment for long periods. Ambient air has become the most important pathway for the transfer of PCDDs/PCDFs from emission sources to the environment. This review intends to summarise the information available on atmospheric PCDDs/PCDFs in the countries of Southeast Asia to provide a detailed description of the trends in PCDDs/PCDFs emissions, key sources, and levels in urban, rural, and industrial air as reported in peer-reviewed literature since 2000 and by the United Nations Environment Programme. As the largest country in Southeast Asia, Indonesia is the major PCDDs/PCDFs emitter, accounting for 72.81% of the total release of PCDDs/PCDFs in the air from all available inventories in this region, while Brunei Darussalam is the lowest emitter, contributing to less than 0.02%. Open burning processes have become the largest source of ambient PCDDs/PCDFs in the region (69.62%), followed by waste incineration (10.69%), and ferrous and non-ferrous metal production (8.78%). PCDDs/PCDFs levels in rural areas ranged between 10 and 38 fg TEQ m-3; however, where open burning waste has occurred, the levels rose to 12-29 times higher. In urban areas, ambient levels were 15 times greater than in rural areas, varying from 23 to 565 fg TEQ m-3. Atmospheric concentrations near industrial palm oil and waste incinerator sites were between 64 and 1530 fg TEQ m-3. The non-cancer risk of ambient exposure to PCDDs/PCDFs through inhalation is low among populations near facilities emitting PCDDs/PCDFs. The lack of local technical capacity, the high economic costs, and the lack of established human resource capacities have been the major challenges in conducting ambient PCDDs/PCDFs studies in most countries in the region.
The lichen collection from Bukit Larut, Taiping, Malaysia in 1999 included Bulbothrix isidiza, Chrysothrix xanthina, Cladonia adspersa, C. verticillata, Coccocarpia palmicola, Heterodermia flabellata, H. japonica, H. obscurata, Hypotrachyna imbricatula, Leptogium azureum, Parmelinella wallichiana, Parmotrema tinctorum, P. clavuliferum, P. reticulatum, Pertusaria sp., Physma byrsaeum, Usnea baileyi and Usnea rubrotincta. Secondary metabolites could not be detected in three lichens, Coccocarpia palmicola, Leptogium azureum and Physma byrsaeum by HPLC and TLC analysis. The other 15 lichen species showed the presence of ten classes of compounds, depsides (10 compounds), depsidones (16), quinones (5), xanthones (2), naphthopyrones (1), pulvinic acid derivatives (1), diphenylethers (1), dibenzofurans (1), aliphatic acids (4) and terpenoids (3).
An average 50 ml breast milk samples were collected from 21 lactating primiparous mothers (range 25 to 45 years, mean 33 years), 4-8 weeks after delivery in Penang Island, Malaysia. The geometric mean concentration of the most toxic congeners, 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) was 0.14 pg WHO2005-TEQ g-1 zlipid. The most abundant congeners of PCDD/Fs were octachlorodibenzo-p-dioxin (OCDD) (5.9-75.4%), followed by 1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin (1,2,3,4,6,7,8-HpCDD) (1.1-30.7%). The geometric mean level of total dioxins and dl-PCBs was 2.2 pg WHO2005-TEQ g-1 lipid, significantly lower than those in developed countries or highly contaminated areas. The total dioxins and dl-PCBs in pg WHO2005-TEQ levels in breast milk were significantly correlated with years of residence at potential contaminated site. The average daily intake of 11.8 pg WHO2005-TEQ kg-1 body weight was estimated for a breastfed infant at 6 months of age. This demonstrates the exposure risk to infants, especially from Penang region, to these pollutants from human milk intake are potentially high during the lactation period.