Displaying all 17 publications

Abstract:
Sort:
  1. Farook TH, Rashid F, Jamayet NB, Abdullah JY, Dudley J, Khursheed Alam M
    J Prosthet Dent, 2022 Oct;128(4):830-836.
    PMID: 33642077 DOI: 10.1016/j.prosdent.2020.12.041
    STATEMENT OF PROBLEM: The anatomic complexity of the ear challenges conventional maxillofacial prosthetic rehabilitation. The introduction of specialized scanning hardware integrated into computer-aided design and computer-aided manufacturing (CAD-CAM) workflows has mitigated these challenges. Currently, the scanning hardware required for digital data acquisition is expensive and not readily available for prosthodontists in developing regions.

    PURPOSE: The purpose of this virtual analysis study was to compare the accuracy and precision of 3-dimensional (3D) ear models generated by scanning gypsum casts with a smartphone camera and a desktop laser scanner.

    MATERIAL AND METHODS: Six ear casts were fabricated from green dental gypsum and scanned with a laser scanner. The resultant 3D models were exported as standard tessellation language (STL) files. A stereophotogrammetry system was fabricated by using a motorized turntable and an automated microcontroller photograph capturing interface. A total of 48 images were captured from 2 angles on the arc (20 degrees and 40 degrees from the base of the turntable) with an image overlap of 15 degrees, controlled by a stepper motor. Ear 1 was placed on the turntable and captured 5 times with smartphone 1 and tested for precision. Then, ears 1 to 6 were scanned once with a laser scanner and with smartphones 1 and 2. The images were converted into 3D casts and compared for accuracy against their laser scanned counterparts for surface area, volume, interpoint mismatches, and spatial overlap. Acceptability thresholds were set at <0.5 mm for interpoint mismatches and >0.70 for spatial overlap.

    RESULTS: The test for smartphone precision in comparison with that of the laser scanner showed a difference in surface area of 774.22 ±295.27 mm2 (6.9% less area) and in volume of 4228.60 ±2276.89 mm3 (13.4% more volume). Both acceptability thresholds were also met. The test for accuracy among smartphones 1, 2, and the laser scanner showed no statistically significant differences (P>.05) in all 4 parameters among the groups while also meeting both acceptability thresholds.

    CONCLUSIONS: Smartphone cameras used to capture 48 overlapping gypsum cast ear images in a controlled environment generated 3D models parametrically similar to those produced by standard laser scanners.

    Matched MeSH terms: Dental Impression Technique*
  2. Abdelrehim A, Salleh NM, Sofian H, Sulaiman E
    J Oral Implantol, 2024 Apr 01;50(2):104-110.
    PMID: 38353347 DOI: 10.1563/aaid-joi-D-23-00063
    Accuracy is a necessity in implant impressions to fabricate accurately fitting implant-supported prostheses. This in vitro study aimed to explore the impact of the number of scan bodies on scanning quality by comparing scans of 2 vs 4 implants, and to determine if their accuracy and precision meets acceptable clinical threshold. Two mandibular edentulous models were used: one with 4-parallel implants (4-IM) and the other with 2-parallel implants (2-IM). Each model was scanned 10 times with an intraoral scanner, while reference scans were obtained with a high-precision laboratory scanner. The accuracy of test scans was evaluated by superimposing them onto reference scans and measuring 3D and angular deviations of the scan bodies. To assess the precision, the repeatability of the scans was analyzed by measuring the 3D SDs. Independent t test was used to compare angular deviations, the Mann-Whitney U test was used for 3D deviations and 3D SDs, and 1 sample t test was used for comparing means to the clinical threshold. Angular and 3D deviations were statistically not significant between the 2 groups (P = .054 and 0.143). 3D deviation values were higher than the 150-µm threshold for 2-IM (201 µm) and 4-IM (290 µm); angular deviation in 2-IM was 0.600 degrees and 0.885 degrees for 4-IM. There was no statistically significant difference in the precision of scans between the 2 groups. (P = .161). Although scanning quality improved when 2 scan bodies were used, the difference was not statistically significant. Moreover, full-arch implant scanning did not meet acceptable levels of accuracy and precision.
    Matched MeSH terms: Dental Impression Technique*
  3. Patil S, Raj AT, Sarode SC, Sarode GS, Menon RK, Bhandi S, et al.
    J Contemp Dent Pract, 2019 Apr 01;20(4):508-515.
    PMID: 31308286
    STATEMENT OF PROBLEM: Prosthetic techniques commonly employed for the rehabilitation of edentulous patients might not be adequate in the treatment of patients with microstomia.

    PURPOSE: The purpose of this paper is to systematically review all the prosthetic techniques that have been used in the oral rehabilitation of patients with microstomia.

    MATERIALS AND METHODS: Data sources, including PubMed, Google Scholar, SCOPUS and Web of Science, were searched for case reports and case series published through September 2017. Three investigators reviewed and verified the extracted data. Only case reports and case series on prosthetic rehabilitation in microstomia patients published in the English language were considered eligible.

    RESULTS: A total of 212 records were identified from the database search. Forty duplicate records were removed. The remaining 172 articles were assessed for eligibility, and 139 articles were removed because they did not satisfy the inclusion criteria. A total of 34 cases (including 32 case reports and 1 case series) were finally included in the qualitative analysis. The review revealed the use of a modified impression technique with flexible and sectional trays to record impressions in patients with microstomia. Modified forms of oral prostheses ranging from sectional, flexible, collapsible and hinged dentures to implant-supported prosthesis were fabricated to overcome the limited mouth opening. The success of the prosthetic technique primarily depended on the extent of the microstomia and the nature of the cause of the microstomia.

    CONCLUSION: Even though the patient acceptance of the prosthetic techniques summarized in the systematic review were high, long-term success rates for each option could not be assessed because of the short follow-up time in most of the included case reports and series.

    Matched MeSH terms: Dental Impression Technique
  4. Yee A, Meei TI, Ling GC
    Prim Dent J, 2023 Mar;12(1):51-56.
    PMID: 36916614 DOI: 10.1177/20501684231153909
    Fibrous ridges on the edentulous maxillary arch are commonly found in combination syndrome or due to ill-fitting dentures. Often, these cases are managed conservatively using modified impression techniques to achieve better support and peripheral seal without displacing the movable tissue. Many impression techniques were proposed and justified with their respective ideologies, but some may complicate both the clinical and laboratory procedures. In this report, two simplified techniques are demonstrated to make an impression of the maxillary arch with fibrous ridges. Laboratory steps in custom tray fabrication are also emphasised for a successful and predictable impression.
    Matched MeSH terms: Dental Impression Technique
  5. Tarib NA, Seong TW, Chuen KM, Kun MS, Ahmad M, Kamarudin KH
    Eur J Prosthodont Restor Dent, 2012 Mar;20(1):35-9.
    PMID: 22474935
    This paper aims to evaluate the effect of splinting during implant impression. A master model with two fixtures at the sites of 45 and 47 was used. 20 impressions were made for all four techniques: (A) indirect; (B) direct, unsplinted; (C) direct, splinted; and (D) direct, splinted, sectioned, and re-splinted. Splinting was undertaken with autopolymerizing acrylic resin (AAR). Horizontal distance between fixtures was compared using a digital caliper. The difference in distance were analysed with one-way ANOVA. Group A showed a significantly lowest accuracy among all techniques (p < or = 0.05). There was no significant difference of accuracy among the groups using direct techniques (p > or = 0.05). Group D was more accurate compared to group B and C. We conclude that splinting of impression copings would be beneficial to obtain an accurate impression.
    Matched MeSH terms: Dental Impression Technique*
  6. Rahman AM, Nizami MMUI, Jamayet NB, Husein A
    J Coll Physicians Surg Pak, 2017 May;27(5):319-320.
    PMID: 28599699 DOI: 2623
    Matched MeSH terms: Dental Impression Technique*
  7. Baig MR, Buzayan MM, Yunus N
    J Investig Clin Dent, 2018 May;9(2):e12320.
    PMID: 29349910 DOI: 10.1111/jicd.12320
    AIM: The aim of the present study was to assess the accuracy of multi-unit dental implant casts obtained from two elastomeric impression materials, vinyl polyether silicone (VPES) and polyether (PE), and to test the effect of splinting of impression copings on the accuracy of implant casts.

    METHODS: Forty direct impressions of a mandibular reference model fitted with six dental implants and multibase abutments were made using VPES and PE, and implant casts were poured (N = 20). The VPES and PE groups were split into four subgroups of five each, based on splinting type: (a) no splinting; (b) bite registration polyether; (c) bite registration addition silicone; and (d) autopolymerizing acrylic resin. The accuracy of implant-abutment replica positions was calculated on the experimental casts, in terms of interimplant distances in the x, y, and z-axes, using a coordinate measuring machine; values were compared with those measured on the reference model. Data were analyzed using non-parametrical Kruskal-Wallis and Mann-Whitney tests at α = .05.

    RESULTS: The differences between the two impression materials, VPES and PE, regardless of splinting type, were not statistically significant (P>.05). Non-splinting and splinting groups were also not significantly different for both PE and VPES (P>.05).

    CONCLUSIONS: The accuracy of VPES impression material seemed comparable with PE for multi-implant abutment-level impressions. Splinting had no effect on the accuracy of implant impressions.

    Matched MeSH terms: Dental Impression Technique*
  8. Kher U, Patil PG, Tunkiwala A, Advani P
    J Prosthet Dent, 2020 08;124(2):248-249.
    PMID: 31810615 DOI: 10.1016/j.prosdent.2019.09.020
    Matched MeSH terms: Dental Impression Technique
  9. Ling BC
    PMID: 11709981
    Standard prosthodontic procedures require five visits to construct a set of complete maxillary and mandibular dentures. Various attempts have been made to reduce these procedures to four or three appointments. However, most of these techniques require the use of visible light polymerized resin as the final denture base materials. Visible light-cured resin materials have inferior physical properties and biocompatibility problems as compared with heat cured polymethylmethacrylate. This paper describes a system of complete denture construction which requires three clinical appointments instead of the usual five visits. This system is made possible by using the VLC base/tray material as the preliminary impression material as well as the application of a new biometric wax occlusion rim. It retains the use of polymethylmethacrylate as the denture base material. This system also utilizes all the procedures used in the conventional five appointment system of complete denture construction.
    Matched MeSH terms: Dental Impression Technique/instrumentation
  10. Ling BC
    Quintessence Int, 2004 Apr;35(4):294-8.
    PMID: 15119715
    This article describes a technique of constructing a set of maxillary and mandibular complete dentures in three visits instead of the usual five clinical appointments. This system of complete-denture construction is made possible because of the combined use of visible light-cured material as an impression tray and record base material, as well as the use of new biometric wax occlusion rims. Unlike some earlier techniques that use light-cured resin composites as the denture base materials, this method retains the use of heat-cured polymethylmethacrylate as the denture base material.
    Matched MeSH terms: Dental Impression Technique/instrumentation*
  11. Sulong MZ, Setchell DJ
    J Prosthet Dent, 1991 Dec;66(6):743-7.
    PMID: 1805022
    Adhesive bond strength studies for the tray adhesive of an addition vinyl polysiloxane (President) impression material were conducted with an acrylic resin, chromium-plated brass, and plastic trays. Tensile and shear stress studies were performed on the Instron Universal testing machine. Acrylic resin specimens roughened with 80-grit silicon carbide paper exhibited appreciably higher bond strengths compared with different types of tray material and methods of surface preparation.
    Matched MeSH terms: Dental Impression Technique/instrumentation*
  12. Baig MR, Tan KB, Nicholls JI
    J Prosthet Dent, 2010 Oct;104(4):216-27.
    PMID: 20875526 DOI: 10.1016/S0022-3913(10)60128-X
    The marginal fit of crowns is a concern for clinicians, and there is no conclusive evidence of any one margin configuration yielding better results than others in terms of marginal fit.
    Matched MeSH terms: Dental Impression Technique
  13. Shankargouda SB, Sidhu P, Kardalkar S, Desai PM
    J Prosthodont, 2017 Feb;26(2):168-171.
    PMID: 26479878 DOI: 10.1111/jopr.12385
    Residual ridge resorption is a rapid, progressive, irreversible, and inevitable process of bone resorption. Long-standing teeth and implants have been shown to have maintained the bone around them without resorption. Thus, overdenture therapy has been proven to be beneficial in situations where few remaining teeth are present. In addition to the various advantages seen with tooth-supported telescopic overdentures, a few shortcomings can also be expected, including unseating of the overdenture, increased bulk of the prosthesis, secondary caries, etc. The precise transfer of the secondary telescopic copings to maintain the spatial relationship, without any micromovement, remains the most critical step in ensuring the success of the tooth-supported telescopic prosthesis. Thus, a simple and innovative technique of splinting the secondary copings was devised to prevent distortion and micromovement and maintain its spatial relationship.
    Matched MeSH terms: Dental Impression Technique
  14. Chai WL, Moharamzadeh K, van Noort R, Emanuelsson L, Palmquist A, Brook IM
    J Periodontal Res, 2013 Oct;48(5):663-70.
    PMID: 23442017 DOI: 10.1111/jre.12062
    Studies of peri-implant soft tissue on in vivo models are commonly based on histological sections prepared using undecalcified or 'fracture' techniques. These techniques require the cutting or removal of implant during the specimen preparation process. The aim of this study is to explore a new impression technique that does not require any cutting or removal of implant for contour analysis of soft tissue around four types of titanium (Ti) surface roughness using an in vitro three-dimensional oral mucosal model (3D OMM).
    Matched MeSH terms: Dental Impression Technique
  15. Baig MR, Gunaseelan R
    J Oral Implantol, 2012 Apr;38(2):149-53.
    PMID: 20932151 DOI: 10.1563/AAID-JOI-D-09-00089
    Passive fit of a long-span screw-retained implant prosthesis is an important criteria for the success of the restoration. This article describes a technique for fabricating a ceramometal implant fixed dental prosthesis (FDP) for a long-span partially edentulous situation by altering the conventional screw-retained design. The possibility of a passive fit is maximized by intraoral luting of the cast frame to milled abutments, and the potential framework distortion during fabrication is compensated to a major extent. Retrievability is ensured by screw retention of the prosthesis to the implants. Compared with conventional porcelain fused to metal screw-retained FDP, this prosthesis is relatively inexpensive to fabricate.
    Matched MeSH terms: Dental Impression Technique
  16. Baig MR, Rajan G
    J Oral Implantol, 2010;36(3):219-23.
    PMID: 20553176 DOI: 10.1563/AAID-JOI-D-09-00048
    Abstract This article describes the clinical and laboratory procedures involved in the fabrication of laboratory-processed, provisional, screw-retained, implant-supported maxillary and mandibular fixed complete dentures incorporating a cast metal reinforcement for immediate loading of implants. Precise fit is achieved by intraoral luting of the cast frame to milled abutments. Effective splinting of all implants is attained by the metal substructure and retrievability is provided by the screw-retention of the prosthesis.
    Matched MeSH terms: Dental Impression Technique
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links