METHODS: A pilot cluster randomized controlled trial (cRCT) with qualitative interviews was conducted. Each primary care doctor was considered a cluster and randomized to either the control (usual practice) or intervention (DeSSBack) group. Patient outcomes including Roland-Morris Disability Questionnaire (RMDQ), Hospital Anxiety and Depression Scale, and a 10-point pain rating scale were measured at baseline and 2-month postintervention. The doctors in the intervention group were interviewed to explore feasibility and acceptability of using DeSSBack.
RESULTS: Thirty-six patients with nonspecific LBP participated in this study (intervention n = 23; control n = 13). Fidelity was poor among patients but good among doctors. The RMDQ and anxiety score had medium effect sizes of 0.718 and 0.480, respectively. The effect sizes for pain score (0.070) and depression score were small (0.087). There was appreciable acceptability and satisfaction with use of DeSSBack, as it was helpful in facilitating thorough and standardized management, providing appropriate treatment plans based on risk stratification, improving consultation time, empowering patient-centred care, and easy to use.
CONCLUSIONS: A future cRCT to evaluate the effectiveness of DeSSBack is feasible to be conducted in a primary care setting with minor modifications. DeSSBack was found useful by doctors and can be improved to enhance efficiency.
TRIAL REGISTRATION: The protocol of the cluster randomized controlled trial was registered at ClinicalTrials.gov (NCT04959669).
METHOD: A qualitative case study evaluation was conducted at a 620-bed public teaching hospital in Malaysia using interview, observation, and document analysis to investigate the features and functions of alert appropriateness and workflow-related issues in cardiological and dermatological settings. The current state map for medication prescribing process was also modelled to identify problems pertinent to CDS alert appropriateness.
RESULTS: The main findings showed that CDS was not well designed to fit into a clinician's workflow due to influencing factors such as technology (usability, alert content, and alert timing), human (training, perception, knowledge, and skills), organizational (rules and regulations, privacy, and security), and processes (documenting patient information, overriding default option, waste, and delay) impeding the use of CDS with its alert function. We illustrated how alert affect workflow in clinical processes using a Lean tool known as value stream mapping. This study also proposes how CDS alerts should be integrated into clinical workflows to optimize their potential to enhance patient safety.
CONCLUSION: The design and implementation of CDS alerts should be aligned with and incorporate socio-technical factors. Process improvement methods such as Lean can be used to enhance the appropriateness of CDS alerts by identifying inefficient clinical processes that impede the fit of these alerts into clinical workflow.
METHODS: A scoping review was carried out using the Arksey and O'Malley methodological framework. The search strategy was developed iteratively, with three main aspects: general practice/primary care contexts, risk assessment/decision support tools, and workload-related factors. Three databases were searched in 2019, and updated in 2021, covering articles published since 2009: Medline (Ovid), HMIC (Ovid) and Web of Science (TR). Double screening was completed by two reviewers, and data extracted from included articles were analysed.
RESULTS: The search resulted in 5,594 references, leading to 95 full articles, referring to 87 studies, after screening. Of these, 36 studies were based in the USA, 21 in the UK and 11 in Australia. A further 18 originated from Canada or Europe, with the remaining studies conducted in New Zealand, South Africa and Malaysia. Studies examined the use of eCDS tools and reported some findings related to their impact on workload, including on consultation duration. Most studies were qualitative and exploratory in nature, reporting health professionals' subjective perceptions of consultation duration as opposed to objectively-measured time spent using tools or consultation durations. Other workload-related findings included impacts on cognitive workload, "workflow" and dialogue with patients, and clinicians' experience of "alert fatigue".
CONCLUSIONS: The published literature on the impact of eCDS tools in general practice showed that limited efforts have focused on investigating the impact of such tools on workload and workflow. To gain an understanding of this area, further research, including quantitative measurement of consultation durations, would be useful to inform the future design and implementation of eCDS tools.
METHODS: Eight scientific databases are selected as an appropriate database and Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method was employed as the basis method for conducting this systematic and meta-analysis review. Regarding the main objective of this research, some inclusion and exclusion criteria were considered to limit our investigation. To achieve a structured meta-analysis, all eligible articles were classified based on authors, publication year, journals or conferences, applied fuzzy methods, main objectives of the research, problems and research gaps, tools utilized to model the fuzzy system, medical disciplines, sample sizes, the inputs and outputs of the system, findings, results and finally the impact of applied fuzzy methods to improve diagnosis. Then, we analyzed the results obtained from these classifications to indicate the effect of fuzzy methods in decreasing the complexity of diagnosis.
RESULTS: Consequently, the result of this study approved the effectiveness of applying different fuzzy methods in diseases diagnosis process, presenting new insights for researchers about what kind of diseases which have been more focused. This will help to determine the diagnostic aspects of medical disciplines that are being neglected.
CONCLUSIONS: Overall, this systematic review provides an appropriate platform for further research by identifying the research needs in the domain of disease diagnosis.