Displaying all 3 publications

Abstract:
Sort:
  1. Mohsin AZ, Sukor R, Selamat J, Meor Hussin AS, Ismail IH, Jambari NN, et al.
    Molecules, 2020 Jun 05;25(11).
    PMID: 32516919 DOI: 10.3390/molecules25112622
    The chemical, technological and allergy properties of goat's milk are significantly affected by the level of αs1-casein. Detection and quantification of αs1-casein requires high-specificity methods to overcome high-sequence similarity between this protein and others in the casein family. Unavailability of antibodies with high affinity and specificity towards goat αs1-casein hinders the development of immuno-based analytical methods such as enzyme-linked immunosorbent assay (ELISA) and biosensors. Here, we report the generation of polyclonal antibodies (or immunoglobulins, IgGs) raised towards goat αs1-casein N- (Nter) and C-terminal (Cter) peptide sequences. The Nter and Cter peptides of goat αs1-casein were immunized in rabbits for the generation of antisera, which were purified using protein G affinity chromatography. The binding affinity of the antisera and purified IgGs were tested and compared using indirect ELISA, where peptide-BSA conjugates and goat αs1-casein were used as the coating antigens. The Nter antiserum displayed higher titer than Cter antiserum, at 1/64,000 and 1/32,000 dilutions, respectively. The purification step further yielded 0.5 mg/mL of purified IgGs from 3 mL of antisera. The purified Nter IgG showed a significantly (p < 0.05) higher binding affinity towards peptide-BSA and goat αs1-casein, with lower Kd value at 5.063 × 10-3 μM compared to 9.046 × 10-3 μM for the Cter IgG. A cross-reactivity test showed that there was no binding in neither Nter nor Cter IgGs towards protein extracts from the milk of cow, buffalo, horse and camel. High-quality antibodies generated will allow further development of immuno-based analytical methods and future in vitro studies to be conducted on goat αs1-casein.
    Matched MeSH terms: Caseins/analysis*
  2. Tan TJ, Wang D, Moraru CI
    J Dairy Sci, 2014;97(8):4759-71.
    PMID: 24881794 DOI: 10.3168/jds.2014-7957
    The main challenge in microfiltration (MF) is membrane fouling, which leads to a significant decline in permeate flux and a change in membrane selectivity over time. This work aims to elucidate the mechanisms of membrane fouling in cold MF of skim milk by identifying and quantifying the proteins and minerals involved in external and internal membrane fouling. Microfiltration was conducted using a 1.4-μm ceramic membrane, at a temperature of 6±1°C, cross-flow velocity of 6m/s, and transmembrane pressure of 159kPa, for 90min. Internal and external foulants were extracted from a ceramic membrane both after a brief contact between the membrane and skim milk, to evaluate instantaneous adsorption of foulants, and after MF. Four foulant streams were collected: weakly attached external foulants, weakly attached internal foulants, strongly attached external foulants, and strongly attached internal foulants. Liquid chromatography coupled with tandem mass spectrometry analysis showed that all major milk proteins were present in all foulant streams. Proteins did appear to be the major cause of membrane fouling. Proteomics analysis of the foulants indicated elevated levels of serum proteins as compared with milk in the foulant fractions collected from the adsorption study. Caseins were preferentially introduced into the fouling layer during MF, when transmembrane pressure was applied, as confirmed both by proteomics and mineral analyses. The knowledge generated in this study advances the understanding of fouling mechanisms in cold MF of skim milk and can be used to identify solutions for minimizing membrane fouling and increasing the efficiency of milk MF.
    Matched MeSH terms: Caseins/analysis
  3. Ashley J, Shukor Y, D'Aurelio R, Trinh L, Rodgers TL, Temblay J, et al.
    ACS Sens, 2018 02 23;3(2):418-424.
    PMID: 29333852 DOI: 10.1021/acssensors.7b00850
    Food recalls due to undeclared allergens or contamination are costly to the food manufacturing industry worldwide. As the industry strives for better manufacturing efficiencies over a diverse range of food products, there is a need for the development of new analytical techniques to improve monitoring of the presence of unintended food allergens during the food manufacturing process. In particular, the monitoring of wash samples from cleaning in place systems (CIP), used in the cleaning of food processing equipment, would allow for the effective removal of allergen containing ingredients in between food batches. Casein proteins constitute the biggest group of proteins in milk and hence are the most common milk protein allergen in food ingredients. As such, these proteins could present an ideal analyte for cleaning validation. In this work, molecularly imprinted polymer nanoparticles (nanoMIPs) with high affinity toward bovine α-casein were synthesized using a solid-phase imprinting method. The nanoMIPs were then characterized and incorporated into label free surface plasmon resonance (SPR) based sensor. The nanoMIPs demonstrated good binding affinity and selectivity toward α-casein (KD ∼ 10 × 10-9 M). This simple affinity sensor demonstrated the quantitative detection of α-casein achieving a detection limit of 127 ± 97.6 ng mL-1 (0.127 ppm) which is far superior to existing commercially available ELISA kits. Recoveries from spiked CIP wastewater samples were within the acceptable range (87-120%). The reported sensor could allow food manufacturers to adequately monitor and manage food allergen risk in food processing environments while ensuring that the food produced is safe for the consumer.
    Matched MeSH terms: Caseins/analysis*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links