Displaying all 9 publications

Abstract:
Sort:
  1. Lim TS, Ch'ng ACW, Song BPC, Lai JY
    Methods Mol Biol, 2023;2702:275-290.
    PMID: 37679625 DOI: 10.1007/978-1-0716-3381-6_14
    Phage display is a technique that allows the presentation of unique proteins on the surface of bacteriophages. The phage particles are usually screened via repetitive rounds of antigen-guided selection and phage amplification. The main advantage of this approach lies in the physical linkage between phenotype and genotype. This feature allows the isolation of single unique clones from a panning campaign consisting of a highly diverse population of clones. Due to the high-throughput nature of this technique, different approaches have been developed to assist phage display selections. One of which involves utilizing a streptavidin-coated solid-phase extraction (SPE) tip that is mounted to an electronically controlled motorized multichannel pipette. In this chapter, we will entail the procedures involved in the adaptation of a commercial SPE tip (MSIA™ streptavidin D.A.R.T's®) as the solid phase. This protocol is an updated version of a previous protocol with some minor refinements.
    Matched MeSH terms: Bioprospecting*
  2. Akbari SI, Prismantoro D, Permadi N, Rossiana N, Miranti M, Mispan MS, et al.
    Microbiol Res, 2024 Jun;283:127665.
    PMID: 38452552 DOI: 10.1016/j.micres.2024.127665
    Drought-induced stress represents a significant challenge to agricultural production, exerting adverse effects on both plant growth and overall productivity. Therefore, the exploration of innovative long-term approaches for addressing drought stress within agriculture constitutes a crucial objective, given its vital role in enhancing food security. This article explores the potential use of Trichoderma, a well-known genus of plant growth-promoting fungi, to enhance plant tolerance to drought stress. Trichoderma species have shown remarkable potential for enhancing plant growth, inducing systemic resistance, and ameliorating the adverse impacts of drought stress on plants through the modulation of morphological, physiological, biochemical, and molecular characteristics. In conclusion, the exploitation of Trichoderma's potential as a sustainable solution to enhance plant drought tolerance is a promising avenue for addressing the challenges posed by the changing climate. The manifold advantages of Trichoderma in promoting plant growth and alleviating the effects of drought stress underscore their pivotal role in fostering sustainable agricultural practices and enhancing food security.
    Matched MeSH terms: Bioprospecting
  3. Wan Afifudeen CL, Teh KY, Cha TS
    Mol Biol Rep, 2022 Feb;49(2):1475-1490.
    PMID: 34751914 DOI: 10.1007/s11033-021-06903-y
    In viral respiratory infections, disrupted pathophysiological outcomes have been attributed to hyper-activated and unresolved inflammation responses of the immune system. Integration between available drugs and natural therapeutics have reported benefits in relieving inflammation-related physiological outcomes and microalgae may be a feasible source from which to draw from against future coronavirus-infections. Microalgae represent a large and diverse source of chemically functional compounds such as carotenoids and lipids that possess various bioactivities, including anti-inflammatory properties. Therefore in this paper, some implicated pathways causing inflammation in viral respiratory infections are discussed and juxtaposed along with available research done on several microalgal metabolites. Additionally, the therapeutic properties of some known anti-inflammatory, antioxidant and immunomodulating compounds sourced from microalgae are reported for added clarity.
    Matched MeSH terms: Bioprospecting/methods
  4. Ch'ng ACW, Konthur Z, Lim TS
    Methods Mol Biol, 2023;2702:291-313.
    PMID: 37679626 DOI: 10.1007/978-1-0716-3381-6_15
    Bio-panning is a common process involved in recombinant antibody selection against defined targets. The biopanning process aims to isolate specific antibodies against an antigen via affinity selection from a phage display library. In general, antigens are immobilized on solid surfaces such as polystyrene plastic, magnetic beads, and nitrocellulose. For high-throughput selection, semi-automated panning selection allows simultaneous panning against multiple target antigens adapting automated particle processing systems such as the KingFisher Flex. The system setup allows for minimal human intervention for pre- and post-panning steps such as antigen immobilization, phage rescue, and amplification. In addition, the platform is also adaptable to perform polyclonal and monoclonal ELISA for the evaluation process. This chapter will detail the protocols involved from the selection stage until the monoclonal ELISA evaluation with important notes attached at the end of this chapter for optimization and troubleshooting purposes.
    Matched MeSH terms: Bioprospecting
  5. Ishima Y, Mimono A, Tuan Giam Chuang V, Fukuda T, Kusumoto K, Okuhira K, et al.
    IUBMB Life, 2020 04;72(4):641-651.
    PMID: 31794135 DOI: 10.1002/iub.2203
    Deposition of amyloid protein, particularly Aβ1-42 , is a major contributor to the onset of Alzheimer's disease (AD). However, almost no deposition of Aβ in the peripheral tissues could be found. Human serum albumin (HSA), the most abundant protein in the blood, has been reported to inhibit amyloid formation through binding Aβ, which is believed to play an important role in the peripheral clearance of Aβ. We identified the Aβ binding site on HSA and developed HSA mutants with high binding capacities for Aβ using a phage display method. HSA fragment 187-385 (Domain II) was found to exhibit the highest binding capacity for Aβ compared with the other two HSA fragments. To elucidate the sequence that forms the binding site for Aβ on Domain II, a random screening of Domain II display phage biopanning was constructed. A number of mutants with higher Aβ binding capacities than the wild type were identified. These mutants exhibited stronger scavenging abilities than the wild type, as revealed via in vitro equilibrium dialysis of Aβ experiments. These findings provide useful basic data for developing a safer alternative therapy than Aβ vaccines and for application in plasma exchange as well as extracorporeal dialysis.
    Matched MeSH terms: Bioprospecting
  6. Zakri, A.H.
    ASM Science Journal, 2009;3(2):200-202.
    MyJurnal
    Recent studies by the United Nations University - Institute of Advanced Studies (UNU-IAS) demonstrate that bioprospecting is taking place in Antarctica and the Southern Ocean and that related commercial applications were being marketed. The bioprospectors’ interest in Antarctica stems from two reasons. First, the lack of knowledge surrounding Antarctic biota provides opportunities to discover novel organisms of potential use to biotechnology. Second, Antarctica’s environmental extremes, such as cold temperatures, extreme aridity and salinity present conditions in which biota have evolved unique characteristics for survival (UNU-IAS 2003). Thus bioprospecting opportunities include, inter alia, the discovery of novel bioactives in species found in cold and dry lithic habitat, novel pigments found in hyper-saline lakes and antifreezes in sea-lakes (Cheng & Cheng 1999).
    Matched MeSH terms: Bioprospecting
  7. Fu X, Song X, Li X, Wong KK, Li J, Zhang F, et al.
    PMID: 28191021 DOI: 10.1155/2017/4365715
    Traditional Chinese Marine Medicine (TCMM) represents one of the medicinal resources for research and development of novel anticancer drugs. In this study, to investigate the presence of anticancer activity (AA) displayed by cold or hot nature of TCMM, we analyzed the association relationship and the distribution regularity of TCMMs with different nature (613 TCMMs originated from 1,091 species of marine organisms) via association rules mining and phylogenetic tree analysis. The screened association rules were collected from three taxonomy groups: (1) Bacteria superkingdom, Phaeophyceae class, Fucales order, Sargassaceae family, and Sargassum genus; (2) Viridiplantae kingdom, Streptophyta phylum, Malpighiales class, and Rhizophoraceae family; (3) Holothuroidea class, Aspidochirotida order, and Holothuria genus. Our analyses showed that TCMMs with closer taxonomic relationship were more likely to possess anticancer bioactivity. We found that the cluster pattern of marine organisms with reported AA tended to cluster with cold nature TCMMs. Moreover, TCMMs with salty-cold nature demonstrated properties for softening hard mass and removing stasis to treat cancers, and species within Metazoa or Viridiplantae kingdom of cold nature were more likely to contain AA properties. We propose that TCMMs from these marine groups may enable focused bioprospecting for discovery of novel anticancer drugs derived from marine bioresources.
    Matched MeSH terms: Bioprospecting
  8. Katayama T, Nagao N, Kasan NA, Khatoon H, Rahman NA, Takahashi K, et al.
    J Biotechnol, 2020 Nov 10;323:113-120.
    PMID: 32768414 DOI: 10.1016/j.jbiotec.2020.08.001
    We isolated fifty-two strains from the marine aquaculture ponds in Malaysia that were evaluated for their lipid production and ammonium tolerance and four isolates were selected as new ammonium tolerant microalgae with high-lipid production: TRG10-p102 Oocystis heteromucosa (Chlorophyceae); TRG10-p103 and TRG10-p105 Thalassiosira weissflogii (Bacillariophyceae); and TRG10-p201 Amphora coffeiformis (Bacillariophyceae). Eicosapentenoic acid (EPA) in three diatom strain was between 2.6 and 18.6 % of total fatty acids, which were higher than in O. heteromucosa. Only A. coffeiformi possessed arachidonic acid. Oocystis heteromucosa naturally grew at high ammonium concentrations (1.4-10 mM), whereas the growth of the other strains, T. weissflogii and A. coffeiformi, were visibly inhibited at high ammonium concentrations (>1.4 mM-NH4). However, two strains of T. weissflogii were able to grow at up to 10 mM-NH4 by gradually acclimating to higher ammonium concentrations. The ammonium tolerant strains, especially T. weissflogii which have high EPA contents, were identified as a valuable candidate for biomass production utilizing NH4-N media, such as ammonium-rich wastewater.
    Matched MeSH terms: Bioprospecting/methods*
  9. Lim CC, Woo PCY, Lim TS
    Sci Rep, 2019 Apr 15;9(1):6088.
    PMID: 30988390 DOI: 10.1038/s41598-019-42628-6
    Antibody phage display has been pivotal in the quest to generate human monoclonal antibodies for biomedical and research applications. Target antigen preparation is a main bottleneck associated with the panning process. This includes production complexity, downstream purification, quality and yield. In many instances, purified antigens are preferred for panning but this may not be possible for certain difficult target antigens. Here, we describe an improved procedure of affinity selection against crude or non-purified antigen by saturation of non-binders with blocking agents to promote positive binder enrichment termed as Yin-Yang panning. A naïve human scFv library with kappa light chain repertoire with a library size of 109 was developed. The improved Yin-Yang biopanning process was able to enrich monoclonal antibodies specific to the MERS-CoV nucleoprotein. Three unique monoclonal antibodies were isolated in the process. The Yin-Yang biopanning method highlights the possibility of utilizing crude antigens for the isolation of monoclonal antibodies by phage display.
    Matched MeSH terms: Bioprospecting/methods*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links