Displaying all 4 publications

Abstract:
Sort:
  1. Thwe PN, Yeong KY, Choo WS
    Plant Foods Hum Nutr, 2023 Sep;78(3):613-619.
    PMID: 37466824 DOI: 10.1007/s11130-023-01081-7
    Betacyanin-rich extract from red beet (Beta vulgaris) was recently reported to inhibit amyloid β (Aβ) aggregation, a main pathological event in Alzheimer's disease. However, the anti-Aβ aggregation effect of individual betacyanin isolates has not been reported before. This study investigated the anti-Aβ aggregation activity and cytotoxicity of betacyanins from red pitahaya or red dragon fruit (Hylocereus polyrhizus). Betacyanin fraction (IC50 = 16.02 ± 1.15 µg/mL) and individual betacyanin isolates exhibited anti-Aβ aggregation activity in a concentration-dependent manner using a thioflavin T fluorescence assay. The highest to lowest IC50 was in the order of betanin (426.30 ± 29.55 µM), phyllocactin (175.22 ± 1.52 µM), and hylocerenin (131.73 ± 5.58 µM), following a trend of increase in functional groups of carboxyl, hydroxyl, and/or carbonyl. Further, the betacyanin fraction of 135.78 µg/mL and below, which were concentrations with an anti-Aβ aggregation effect, were validated as non-neurotoxic based on an in vitro cytotoxicity assay using human neuroblastoma (SH-SY5Y) cells. These findings highlight the potential neuroprotective activity of betacyanins for Alzheimer's disease.
    Matched MeSH terms: Betacyanins/pharmacology
  2. Yong YY, Dykes G, Lee SM, Choo WS
    Plant Foods Hum Nutr, 2017 Mar;72(1):41-47.
    PMID: 27917454 DOI: 10.1007/s11130-016-0586-x
    Betacyanins are reddish to violet pigments that can be found in red pitahaya (Hylocereus polyrhizus) and red spinach (Amaranthus dubius). This study investigated the impact of sub-fractionation (solvent partitioning) on betacyanin content in both plants. Characterization of betacyanins and evaluation of their antimicrobial activities were also carried out. Betanin was found in both plants. In addition, isobetanin, phyllocactin and hylocerenin were found in red pitahaya whereas amaranthine and decarboxy-amaranthine were found in red spinach. Sub-fractionated red pitahaya and red spinach had 23.5 and 121.5 % more betacyanin content, respectively, than those without sub-fractionation. Sub-fractionation increased the betanin and decarboxy-amaranthine content in red pitahaya and red spinach, respectively. The betacyanin fraction from red spinach (minimum inhibitory concentration [MIC] values: 0.78-3.13 mg/mL) demonstrated a better antimicrobial activity profile than that of red pitahaya (MIC values: 3.13-6.25 mg/mL) against nine Gram-positive bacterial strains. Similarly, the red spinach fraction (MIC values: 1.56-3.13 mg/mL) was more active than the red pitahaya fraction (MIC values: 3.13-6.25 mg/mL) against five Gram-negative bacterial strains. This could be because of a higher amount of betacyanin, particularly amaranthine in the red spinach.
    Matched MeSH terms: Betacyanins/pharmacology
  3. Yong YY, Ong MWK, Dykes G, Choo WS
    FEMS Microbiol Lett, 2021 01 26;368(1).
    PMID: 33338235 DOI: 10.1093/femsle/fnaa214
    Staphylococcus aureus and Pseudomonas aeruginosa are bacteria that cause biofilm-associated infections. The aim of this study was to determine the activity of combined betacyanin fractions from Amaranthus dubius (red spinach) and Hylocereus polyrhizus (red pitahaya) against biofilms formed by co-culture of S. aureus and P. aeruginosa on different polymer surfaces. Various formulations containing different concentrations of the betacyanin fractions were investigated for biofilm-inhibiting activity on polystyrene surfaces using crystal violet assay and scanning electron microscopy. A combination of each betacyanin fraction (0.625 mg mL-1) reduced biofilm formation of five S. aureus strains and four P. aeruginosa strains from optical density values of 1.24-3.84 and 1.25-3.52 to 0.81-2.63 and 0.80-1.71, respectively. These combined fractions also significantly inhibited dual-species biofilms by 2.30 and reduced 1.0-1.3 log CFU cm-2 bacterial attachment on polymer surfaces such as polyvinyl chloride, polyethylene, polypropylene and silicone rubber. This study demonstrated an increase in biofilm-inhibiting activity against biofilms formed by two species using combined fractions than that by using single fractions. Betacyanins found in different plants could collectively be used to potentially decrease the risk of biofilm-associated infections caused by these bacteria on hydrophobic polymers.
    Matched MeSH terms: Betacyanins/pharmacology*
  4. Yong YY, Dykes G, Lee SM, Choo WS
    J Appl Microbiol, 2019 Jan;126(1):68-78.
    PMID: 30153380 DOI: 10.1111/jam.14091
    AIMS: To investigate the biofilm inhibitory activity of betacyanins from red pitahaya (Hylocereus polyrhizus) and red spinach (Amaranthus dubius) against Staphylococcus aureus and Pseudomonas aeruginosa biofilms.

    METHODS AND RESULTS: The pulp of red pitahaya and the leaves of red spinach were extracted using methanol followed by subfractionation to obtain betacyanin fraction. The anti-biofilm activity was examined using broth microdilution assay on polystyrene surfaces and expressed as minimum biofilm inhibitory concentration (MBIC). The betacyanin fraction from red spinach showed better anti-biofilm activity (MBIC: 0·313-1·25 mg ml-1 ) against five Staph. aureus strains while the betacyanin fraction from red pitahaya showed better anti-biofilm activity (MBIC: 0·313-0·625 mg ml-1 ) against four P. aeruginosa strains. Both betacyanin fraction significantly reduced hydrophobicity of Staph. aureus and P. aeruginosa strains. Numbers of Staph. aureus and P. aeruginosa attached to polystyrene were also reduced without affecting their cell viability.

    CONCLUSION: Betacyanins can act as anti-biofilm agents against the initial step of biofilm formation, particularly on a hydrophobic surface like polystyrene.

    SIGNIFICANCE AND IMPACT OF THE STUDY: This study is the first to investigate the use of betacyanin as a biofilm inhibitory agent. Betacyanin could potentially be used to reduce the risk of biofilm-associated infections.

    Matched MeSH terms: Betacyanins/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links