Displaying all 2 publications

Abstract:
Sort:
  1. Kato T, Azegami J, Yokomori A, Dohra H, El Enshasy HA, Park EY
    BMC Genomics, 2020 Apr 23;21(1):319.
    PMID: 32326906 DOI: 10.1186/s12864-020-6709-7
    BACKGROUND: Ashbya gossypii naturally overproduces riboflavin and has been utilized for industrial riboflavin production. To improve riboflavin production, various approaches have been developed. In this study, to investigate the change in metabolism of a riboflavin-overproducing mutant, namely, the W122032 strain (MT strain) that was isolated by disparity mutagenesis, genomic analysis was carried out.

    RESULTS: In the genomic analysis, 33 homozygous and 1377 heterozygous mutations in the coding sequences of the genome of MT strain were detected. Among these heterozygous mutations, the proportion of mutated reads in each gene was different, ranging from 21 to 75%. These results suggest that the MT strain may contain multiple nuclei containing different mutations. We tried to isolate haploid spores from the MT strain to prove its ploidy, but this strain did not sporulate under the conditions tested. Heterozygous mutations detected in genes which are important for sporulation likely contribute to the sporulation deficiency of the MT strain. Homozygous and heterozygous mutations were found in genes encoding enzymes involved in amino acid metabolism, the TCA cycle, purine and pyrimidine nucleotide metabolism and the DNA mismatch repair system. One homozygous mutation in AgILV2 gene encoding acetohydroxyacid synthase, which is also a flavoprotein in mitochondria, was found. Gene ontology (GO) enrichment analysis showed heterozygous mutations in all 22 DNA helicase genes and genes involved in oxidation-reduction process.

    CONCLUSION: This study suggests that oxidative stress and the aging of cells were involved in the riboflavin over-production in A. gossypii riboflavin over-producing mutant and provides new insights into riboflavin production in A. gossypii and the usefulness of disparity mutagenesis for the creation of new types of mutants for metabolic engineering.

    Matched MeSH terms: Acetolactate Synthase/genetics
  2. Ruzmi R, Ahmad-Hamdani MS, Mazlan N
    PLoS One, 2020;15(9):e0227397.
    PMID: 32925921 DOI: 10.1371/journal.pone.0227397
    The continuous and sole dependence on imidazolinone (IMI) herbicides for weedy rice control has led to the evolution of herbicide resistance in weedy rice populations across various countries growing IMI herbicide-resistant rice (IMI-rice), including Malaysia. A comprehensive study was conducted to elucidate occurrence, level, and mechanisms endowing resistance to IMI herbicides in putative resistant (R) weedy rice populations collected from three local Malaysian IMI-rice fields. Seed bioassay and whole-plant dose-response experiments were conducted using commercial IMI herbicides. Based on the resistance index (RI) quantification in both experiments, the cross-resistance pattern of R and susceptible (S) weedy rice populations and control rice varieties (IMI-rice variety MR220CL2 and non-IMI-rice variety MR219) to imazapic and imazapyr was determined. A molecular investigation was carried out by comparing the acetohydroxyacid synthase (AHAS) gene sequences of the R and S populations and the MR220CL2 and MR219 varieties. The AHAS gene sequences of R weedy rice were identical to those of MR220CL2, exhibiting a Ser-653-Asn substitution, which was absent in MR219 and S plants. In vitro assays were conducted using analytical grade IMI herbicides of imazapic (99.3%) and imazapyr (99.6%) at seven different concentrations. The results demonstrated that the AHAS enzyme extracted from the R populations and MR220CL2 was less sensitive to IMI herbicides than that from S and MR219, further supporting that IMI herbicide resistance was conferred by target-site mutation. In conclusion, IMI resistance in the selected populations of Malaysian weedy rice could be attributed to a Ser-653-Asn mutation that reduced the sensitivity of the target site to IMI herbicides. To our knowledge, this study is the first to show the resistance mechanism in weedy rice from Malaysian rice fields.
    Matched MeSH terms: Acetolactate Synthase/genetics*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links