Displaying all 2 publications

Abstract:
Sort:
  1. Syahir Habib, Mohd Yunus Abd Shukor, Nur Adeela Yasid, Wan Lutfi Wan Johari
    MyJurnal
    Petroleum hydrocarbons remain as the major contaminants that could be found across the world.
    Remediation approach through the utilisation of microbes as the bioremediation means widely
    recognised due to their outstanding values. As a result, scientific reports on the isolation and
    identification of new hydrocarbon-degrading strains were on the rise. Colourimetric-based assays
    are one of the fastest methods to identify the capability of hydrocarbon-degrading strains in both
    qualitative and quantitative assessment. In this study, the hydrocarbon-degrading potential of
    nine bacterial isolates was observed via 2,6-dichlorophenolindophenol (DCPIP) test. Two potent
    diesel-utilising isolates show a distinctive tendency to utilise aromatic (ADL15) and aliphatic
    (ADL36) hydrocarbons. Both isolates prove to be a good candidate for bioremediation of wide
    range of petroleum hydrocarbon components.
    Matched MeSH terms: 2,6-Dichloroindophenol
  2. Wan Saidatul, S.W.K., Noriham, A., Zainal, S., Khairusy, S.Z., Nurain, A.
    MyJurnal
    In the last decade, non-thermal processing for inactivating microorganisms has been developed in response to the worldwide interest for more fresh and improved quality of food products. Winter melon is a very perishable fruit, hence, processing into puree is a necessity. However application of heat in the production of puree could affect the nutritional values, thus, application of non thermal treatment in combination with preservation method is significant for this fruit. This study was conducted to evaluate the effect of non-thermal processing in combining with preservation method on antioxidant activity, level of key antioxidant groups (total phenolic and ascorbic acid content) and the color of winter melon puree. Total phenolic content (TPC) was measured using Folin-Ciocalteu reagent. Ascorbic acid (AA) was determined using 2,6-dichlorophenol-indophenol titration method. Antioxidant activity were determined using four antioxidant assays namely Ferric Reducing Antioxidant Potential (FRAP), Oxygen Radical Absorbance Capacity (ORAC), 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) and β-Carotene Bleaching Assays. For the TPC, puree with pH 3 (28.5±1.3 GAE/g fresh weight) exhibited high in TPC as compared to puree with pH 3.5 and unprocessed puree. In contrast, unprocessed puree contains significantly high ascorbic acid (AA) content (35.9 ± 1.8 mg/100 g fresh mass) as compared to pH 3.0 and pH 3.5 purees. In general, antioxidant activity for all assays of pH 3.0 and pH 3.5 purees were significantly higher (p
    Matched MeSH terms: 2,6-Dichloroindophenol
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links