OBJECTIVES: To characterize dietary patterns among pregnant women living in the UAE and examine their associations with gestational weight gain and gestational weight rate.
METHODOLOGY: Data were drawn from the Mother-Infant Study Cohort, a two-year prospective cohort study of pregnant women living in the United Arab Emirates, recruited during their third trimester (n = 242). Weight gain during pregnancy was calculated using data from medical records. The Institute of Medicine's recommendations were used to categorize gestational weight gain and gestational weight gain rate into insufficient, adequate, and excessive. During face-to-face interviews, dietary intake was assessed using an 89-item culture-specific semi-quantitative food frequency questionnaire that referred to usual intake during pregnancy. Dietary patterns were derived by principal component analysis. Multiple logistic regression analyses were used to evaluate the associations of derived dietary patterns with gestational weight gain/gestational weight gain rate.
RESULTS: Two dietary patterns were derived, a "Diverse" and a "Western" pattern. The "Diverse" pattern was characterized by higher intake of fruits, vegetables, mixed dishes while the "Western" pattern consisted of sweets and fast food. The "Western" pattern was associated with excessive gestational weight gain (OR:4.04,95% CI:1.07-15.24) and gestational weight gain rate (OR: 4.38, 95% CI:1.28-15.03) while the "Diverse" pattern decreased the risk of inadequate gestational weight gain (OR:0.24, 95% CI:0.06-0.97) and gestational weight gain rate (OR:0.28, 95% CI:0.09-0.90).
CONCLUSION: The findings of this study showed that adherence to a "Diverse" pattern reduced the risk of insufficient gestational weight gain/gestational weight gain rate, while higher consumption of the "Western" pattern increased the risk of excessive gestational weight gain/gestational weight gain rate. In view of the established consequences of gestational weight gain on the health of the mother and child, there is a critical need for health policies and interventions to promote a healthy lifestyle eating through a life course approach.
METHODS: A total of 392 children participated in the FFQ development and 112 children aged 9-12 years participated in the validation phase; with a subsample of 50 children participating in the reproducibility phase. Three-day diet record (3DR) as the reference method in validation phase. Spearman correlations, mean difference, Bland-Altman plot and cross-classification analyses were used to assess validity. The reproducibility was tested through a repeat administration of the FFQ, with 1 month time interval. Reproducibility analyses involved intra-class correlation coefficient (ICC), Cronbach's alpha and cross-classification analyses.
RESULTS: The FFQ consisted of 156 whole grain food items from six food groups. Mean intake of whole grain in FFQ1 and 3DR were correlated well (r = 0.732), demonstrated good acceptance of the FFQ. Bland Altman plots showed relatively good agreement for both the dietary methods. Cross-classification of whole grain intake between the two methods showed that
METHODS: We randomized 108 overweight and obese patients with T2D (46 M/62F; age 60 ± 10 years; HbA1c 8.07 ± 1.05%; weight 101.4 ± 21.1 kg and BMI 35.2 ± 7.7 kg/m2) into three groups. Group A met with RDN to develop an individualized eating plan. Group B met with RDN and followed a structured meal plan. Group C did similar to group B and received weekly phone support by RDN.
RESULTS: After 16 weeks, all three groups had a significant reduction of their energy intake compared to baseline. HbA1c did not change from baseline in group A, but decreased significantly in groups B (- 0.66%, 95% CI -1.03 to - 0.30) and C (- 0.61%, 95% CI -1.0 to - 0.23) (p value for difference among groups over time
METHODS: A systematic search was carried out among online databases to determine eligible RCTs published up to November 2022. A random-effects model was performed for the meta-analysis.
RESULTS: A total of 36 RCTs with 1851 participants were included in the pooled analysis. It was displayed that supplementation with MP effectively reduced levels of fasting blood glucose (FBG) (weighted mean difference (WMD): -1.83 mg/dL, 95% CI: -3.28, -0.38; P = 0.013), fasting insulin (WMD: -1.06 uU/mL, 95% CI: -1.76, -0.36; P = 0.003), and homeostasis model assessment of insulin resistance (HOMA-IR) (WMD: -0.27, 95% CI: -0.40, -0.14; P 8 weeks) with high or moderate doses (≥ 60 or 30-60 g/d) of MP or whey protein (WP). Serum FBG levels were considerably reduced upon short-term administration of a low daily dose of WP (
OBJECTIVE: Thus, we aimed to determine the impacts of protein supplementation and exercise in older adults with sarcopenic obesity.
METHOD: A systematic database search was conducted for randomised controlled trials, quasi experimental study and pre-post study design addressing the effects of protein supplementation in improving sarcopenic obesity among older adults. This scoping review was conducted based on PRISMA-Scr guidelines across PubMed, Embase, Web of Science and Cochrane Library databases. To assess record eligibility, two independent reviewers performed a rigorous systematic screening process.
RESULTS: Of the 1,811 citations identified, 7 papers met the inclusion criteria. Six studies were randomised controlled trials and one study was a pre-post test study design. The majority of studies discussed the use of both protein supplements and exercise training. The included studies prescribed protein intake ranging from 1.0 to 1.8 g/kg/BW/day for the intervention group, while the duration of exercise performed ranged from 2 to 3 times per week, with each session lasting for 1 hour. Whey protein supplementation has been shown to be effective in improving sarcopenic conditions and weight status in SO individuals. The combination of exercise training especially resistance training and the used of protein supplement provided additional benefits in terms of lean muscle mass as well as biomarkers. The study also revealed a lack of consistency in exercise design among interventions for sarcopenic obesity.
CONCLUSION: Overall, it appears to be a promising option for SO individuals to improve their sarcopenic condition and weight status through the combination of resistance exercise and whey protein supplementation. However, it also highlights the need for caution when it comes to high amounts of protein intake prescription. Future research is warranted to investigate the optimal exercise design for this population, given the limited research conducted in this specific area.
METHOD: This was a two-arm parallel-group randomized controlled trial conducted in two health care clinics of the United Nations Relief and Work Agency (UNRWA) at the Middle Area governorate of Gaza Strip, Palestine. A total of 200 healthy infants aged 6-month-old were recruited and randomized to receive 3 sachets/week of MNP for 12 months alongside with the National Micronutrient Supplement (NMS) (n = 100) or NMS alone (n = 100). Weight, length, blood hemoglobin, and dietary intakes were measured at 6, 9, 12, 15, 18, and 21 (3 months after the end of intervention) months of age. Analysis was by intention to treat.
RESULTS: The experimental group had a higher concentration of hemoglobin at 12 and 15 months than did the control group, and a significant difference (p
OBJECTIVE: To evaluate the effects of conventional dietary recommendations administered with and without additional low-GI education, in the management of glucose tolerance and body weight in Asian women with previous GDM.
METHOD: Seventy seven Asian, non-diabetic women with previous GDM, between 20- 40y were randomised into Conventional healthy dietary recommendation (CHDR) and low GI (LGI) groups. CHDR received conventional dietary recommendations only (energy restricted, low in fat and refined sugars, high-fibre). LGI group received advice on lowering GI in addition. Fasting and 2-h post-load blood glucose after 75 g oral glucose tolerance test (2HPP) were measured at baseline and 6 months after intervention. Anthropometry and dietary intake were assessed at baseline, three and six months after intervention. The study is registered at the Malaysian National Medical Research Register (NMRR) with Research ID: 5183.
RESULTS: After 6 months, significant reductions in body weight, BMI and waist-to-hip ratio were observed only in LGI group (P<0.05). Mean BMI changes were significantly different between groups (LGI vs. CHDR: -0.6 vs. 0 kg/m2, P= 0.03). More subjects achieved weight loss ≥5% in LGI compared to CHDR group (33% vs. 8%, P=0.01). Changes in 2HPP were significantly different between groups (LGI vs. CHDR: median (IQR): -0.2(2.8) vs. +0.8 (2.0) mmol/L, P=0.025). Subjects with baseline fasting insulin≥2 μIU/ml had greater 2HPP reductions in LGI group compared to those in the CHDR group (-1.9±0.42 vs. +1.31±1.4 mmol/L, P<0.001). After 6 months, LGI group diets showed significantly lower GI (57±5 vs. 64±6, P<0.001), GL (122±33 vs. 142±35, P=0.04) and higher fibre content (17±4 vs.13±4 g, P<0.001). Caloric intakes were comparable between groups.
CONCLUSION: In women post-GDM, lowering GI of healthy diets resulted in significant improvements in glucose tolerance and body weight reduction as compared to conventional low-fat diets with similar energy prescription.