METHODS: Data from the CHInese Medicine NeuroAiD Efficacy on Stroke (CHIMES) and CHIMES-Extension (CHIMES-E) studies were analyzed. CHIMES-E was a 24-month follow-up study of subjects included in CHIMES, a multi-centre, double-blind placebo-controlled trial which randomized subjects with acute ischemic stroke, to either MLC601 or placebo for 3 months in addition to standard stroke treatment and rehabilitation. Subjects were stratified according to whether they received or did not receive persistent rehabilitation up to month (M)3 (non- randomized allocation) and by treatment group. The modified Rankin Scale (mRS) and Barthel Index were assessed at month (M) 3, M6, M12, M18, and M24.
RESULTS: Of 880 subjects in CHIMES-E, data on rehabilitation at M3 were available in 807 (91.7%, mean age 61.8 ± 11.3 years, 36% female). After adjusting for prognostic factors of poor outcome (age, sex, pre-stroke mRS, baseline National Institute of Health Stroke Scale, and stroke onset-to-study-treatment time), subjects who received persistent rehabilitation showed consistently higher treatment effect in favor of MLC601 for all time points on mRS 0-1 dichotomy analysis (ORs 1.85 at M3, 2.18 at M6, 2.42 at M12, 1.94 at M18, 1.87 at M24), mRS ordinal analysis (ORs 1.37 at M3, 1.40 at M6, 1.53 at M12, 1.50 at M18, 1.38 at M24), and BI ≥95 dichotomy analysis (ORs 1.39 at M3, 1.95 at M6, 1.56 at M12, 1.56 at M18, 1.46 at M24) compared to those who did not receive persistent rehabilitation.
CONCLUSIONS: More subjects on MLC601 improved to functional independence compared to placebo among subjects receiving persistent rehabilitation up to M3. The larger treatment effect of MLC601 was sustained over 2 years which supports the hypothesis that MLC601 combined with rehabilitation might have beneficial and sustained effects on neuro-repair processes after stroke. There is a need for more data on the effect of combining rehabilitation programs with stroke recovery treatments.
SUMMARY: The definition of distal arterial occlusion is however unclear, and we believe that a uniform nomenclature of distal arterial occlusions is essential for the design of robust randomized controlled studies. We undertook a systematic literature review and comprehensive analysis of 70 articles looking at distal arterial occlusions and previous attempts at classifying them as well as comparing their similarities and differences with a more selective look at the middle cerebral artery. Thirty-two articles were finally deemed suitable and included for this review. In this review article, we present 3 disparate classifications of distal arterial occlusions, namely, classical/anatomical, functional/imaging, and structural/calibre, and compare the similarities and differences between them.
KEY MESSAGES: We propose the adoption of functional/imaging classification to guide the identification of distal arterial occlusions with the M2 segment starting at the point of bifurcation of the middle cerebral artery trunk/M1 segment. With regards to the anterior temporal artery, we propose that it will be considered a branch of the M1 and only be considered as the M2 segment if it is a holo-temporal artery. We believe that this is a practical method of classification in the time-critical decision-making period.
METHODS: We searched PubMed, EMBASE, Cochrane Database of Systematic Reviews, Cochrane Central Register of Controlled Trials (CENTRAL), and CINAHL Plus for articles published from their date of inception to June 2021. RCTs investigating the efficacy or safety of VNS on post-stroke recovery were included. The outcomes were upper limb sensorimotor function, health-related quality of life, level of independence, cardiovascular effects, and adverse events. The risk of bias was assessed using the Cochrane risk-of-bias tool, while the certainty of the evidence was assessed using the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) criteria. Review Manager 5.4 was used to conduct the meta-analysis.
RESULTS: Seven RCTs (n = 236 subjects) met the eligibility criteria. Upper limb sensorimotor function, assessed by the Fugl-Meyer Assessment for Upper Extremity (FMA-UE), improved at day 1 (n = 4 RCTs; standardized mean difference [SMD] 1.01; 95% confidence interval [CI]: 0.35-1.66) and day 90 post-intervention (n = 3 RCTs; SMD 0.64; 95% CI: 0.31-0.98; moderate certainty of evidence) but not at day 30 follow-up (n = 2 RCTs; SMD 1.54; 95% CI: -0.39 to 3.46). Clinically significant upper limb sensorimotor function recovery, as defined by ≥6 points increase in FMA-UE, was significantly higher at day 1 (n = 2 RCTs; risk ratio [RR] 2.01; 95% CI: 1.02-3.94) and day 90 post-intervention (n = 2 RCTs; RR 2.14; 95% CI: 1.32-3.45; moderate certainty of the evidence). The between-group effect sizes for upper limb sensorimotor function recovery was medium to large (Hedges' g 0.535-2.659). While the level of independence improved with VNS, its impact on health-related quality of life remains unclear as this was only studied in two trials with mixed results. Generally, adverse events reported were mild and self-limiting.
CONCLUSION: VNS may be an effective and safe adjunct to standard rehabilitation for post-stroke recovery; however, its clinical significance and long-term efficacy and safety remain unclear.