Displaying all 5 publications

Abstract:
Sort:
  1. Chai YC, Geris L, Bolander J, Pyka G, Van Bael S, Luyten FP, et al.
    Biores Open Access, 2014 Dec 1;3(6):265-77.
    PMID: 25469312 DOI: 10.1089/biores.2014.0050
    Functionalization of tissue engineering scaffolds with in vitro-generated bone-like extracellular matrix (ECM) represents an effective biomimetic approach to promote osteogenic differentiation of stem cells in vitro. However, the bone-forming capacity of these constructs (seeded with or without cells) is so far not apparent. In this study, we aimed at developing a mineralizing culture condition to biofunctionalize three-dimensional (3D) porous scaffolds with highly mineralized ECM in order to produce devitalized, osteoinductive mineralized carriers for human periosteal-derived progenitors (hPDCs). For this, three medium formulations [i.e., growth medium only (BM1), with ascorbic acid (BM2), and with ascorbic acid and dexamethasone (BM3)] supplemented with calcium (Ca(2+)) and phosphate (PO4 (3-)) ions simultaneously as mineralizing source were investigated. The results showed that, besides the significant impacts on enhancing cell proliferation (the highest in BM3 condition), the formulated mineralizing media differentially regulated the osteochondro-related gene markers in a medium-dependent manner (e.g., significant upregulation of BMP2, bone sialoprotein, osteocalcin, and Wnt5a in BM2 condition). This has resulted in distinguished cell populations that were identifiable by specific gene signatures as demonstrated by the principle component analysis. Through devitalization, mineralized carriers with apatite crystal structures unique to each medium condition (by X-ray diffraction and SEM analysis) were obtained. Quantitatively, BM3 condition produced carriers with the highest mineral and collagen contents as well as human-specific VEGF proteins, followed by BM2 and BM1 conditions. Encouragingly, all mineralized carriers (after reseeded with hPDCs) induced bone formation after 8 weeks of subcutaneous implantation in nude mice models, with BM2-carriers inducing the highest bone volume, and the lowest in the BM3 condition (as quantitated by nano-computed tomography [nano-CT]). Histological analysis revealed different bone formation patterns, either bone ossicles containing bone marrow surrounding the scaffold struts (in BM2) or bone apposition directly on the struts' surface (in BM1 and BM3). In conclusion, we have presented experimental data on the feasibility to produce devitalized osteoinductive mineralized carriers by functionalizing 3D porous scaffolds with an in vitro cell-made mineralized matrix under the mineralizing culture conditions.
  2. Kruger MC, Chan YM, Lau C, Lau LT, Chin YS, Kuhn-Sherlock B, et al.
    Biores Open Access, 2019;8(1):16-24.
    PMID: 30842890 DOI: 10.1089/biores.2018.0027
    This study compared the effects of a high-calcium vitamin D fortified milk with added FOS-Inulin versus regular milk on serum parathyroid hormone (PTH), vitamin D status, grip strength (GS), as well as bone density in Chinese premenopausal women over 52 weeks. Premenopausal women (n = 133), mean age 41 (±5.1) years were randomized into control (n = 66; regular milk at 500 mg calcium per day) or intervention (Int; n = 67; fortified milk at 1200 mg calcium, 15 μg vitamin D, and 4 g FOS-Inulin per day) groups. Assessments were at baseline, weeks 12, 24, 36, and 52 for changes in vitamin D status, levels of PTH, and GS. Bone mineral densities (BMDs) of the lumbar spine (LS), femoral neck (FN), and whole body (WB) were assessed at baseline and week 52 using GE Lunar iDEXA (GE Healthcare, Madison, WI). At baseline, WB lean mass was positively associated with LS BMD (r = 0.30, p 
  3. Al Abbar A, Ngai SC, Nograles N, Alhaji SY, Abdullah S
    Biores Open Access, 2020;9(1):121-136.
    PMID: 32368414 DOI: 10.1089/biores.2019.0046
    The generation of induced pluripotent stem cells (iPSCs) from differentiated mature cells is one of the most promising technologies in the field of regenerative medicine. The ability to generate patient-specific iPSCs offers an invaluable reservoir of pluripotent cells, which could be genetically engineered and differentiated into target cells to treat various genetic and degenerative diseases once transplanted, hence counteracting the risk of graft versus host disease. In this context, we review the scientific research streams that lead to the emergence of iPSCs, the roles of reprogramming factors in reprogramming to pluripotency, and the reprogramming strategies. As iPSCs serve tremendous correction potentials for various diseases, we highlight the successes and challenges of iPSCs in cell replacement therapy and the synergy of iPSCs and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing tools in therapeutics research.
  4. Radhakrishnan AK, Sim GC, Cheong SK
    Biores Open Access, 2012 Oct;1(5):239-46.
    PMID: 23515111 DOI: 10.1089/biores.2012.0229
    Repetitive vaccinations with dendritic cell (DC)-based vaccines over long periods of time can break pre-existing tolerance to tumors and achieve clinically relevant immune response. This requires a large number of DCs to be generated under good manufacturing protocol, which is time- and cost intensive. Thus, producing a large numbers of DCs at one time point and cryopreserving these cells in ready-for-use aliquots for clinical application may overcome this constraint. This could also reduce batch-to-batch variations. In this study, we generated DCs from bone marrow obtained from BALB/c mice. Some of the generated DCs were cryopreserved before conducting various tests. There were no significant differences in the morphology and phenotype between cryopreserved and freshly generated DCs. Both types of DCs pulsed with tumor lysate (TL) from 4T1 murine mammary cancer cells (DC+TL) possessed a similar capacity to stimulate the proliferation of T-cells. In addition, cryopreserved and fresh DC pulsed with TL showed similar tumor growth inhibition patterns. Both DCs induced initial retardation of tumor growth (p<0.05) and prolonged the survival (p<0.05) of tumor-bearing mice treated with DC+TL as compared with nontreated control mice. Cryopreserved DCs shared similar therapeutic efficacy to fresh DCs, and this finding lends supports the routine use of cryopreserved DCs in future clinical trials.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links