METHODS: This meta-analysis was performed based on the PRISMA recommendations. PubMed, Web of Science, Scopus, Embase, and Google Scholar databases were searched for all published observational studies that reported the risk of UTI based on BMI categories up to March 2020.
RESULTS: Fourteen (n = 14) articles comprising 19 studies in different populations met our inclusion criteria. The overall analysis showed a significant increased risk of UTI in subjects affected by obesity vs. individuals without obesity (RR = 1.45; 95% CI: 1.28 - 1.63; I2 = 94%), and a non-significant increased risk of UTI in subjects who were overweight (RR = 1.03; 95% CI: 0.98 - 1.10; I2 = 49.6%) and underweight (RR = 0.99; 95% CI: 0.81 - 21; I2 = 0.0%) when compared to subjects who had normal weight. In the stratified analysis, we showed that obesity increased the risk of UTI in females (RR = 1.63; 95% CI: 1.38 - 1.93) and in subjects below 60 years old (RR = 1.53; 95% CI: 1.33 - 1.75).
CONCLUSION: This systematic review and meta-analysis recognized a significant relationship between BMI and incidence of UTI in obese vs. non-obese subjects, as well as in females and in individuals below 60 years old.
METHODS: We performed a comprehensive literature search in Web of Science, PubMed/Medline, Scopus, and Embase databases from inception up to January 2020. We included only randomized controlled trials (RCTs). We used weighted mean difference (WMD) with 95% confidence interval (CI) to assess the influence of omega-3 supplementation on serum 25(OH)D levels using the random-effects model.
RESULTS: Our pooled results of 10 RCTs demonstrated an overall significant increase in 25(OH)D levels following omega-3 intake (WMD = 3.77 ng/ml, 95% CI: 1.29, 6.25). In addition, 25(OH)D levels were significantly increased when the intervention duration lasted >8 weeks and when the baseline serum 25(OH)D level was ˂20 ng/ml. Moreover, omega-3 intake ≤1000 mg/day resulted in higher 25(OH)D levels compared to omega-3 intake >1000 mg/day.
CONCLUSION: In conclusion, omega-3 supplementation increased 25(OH)D concentrations, particularly with dosages ≤1000 mg/day and intervention durations >8 weeks.
METHODS: An electronic database search was conducted on PubMed/Medline, Scopus, Web of Science, and Cochrane for RCTs comparing effect of saffron and placebo on liver enzymes from inception to July 2021. There was no restriction in language of included studies and we calculated the standardized mean difference (SMD) and 95% Confidence Intervals (CI) for each variable. Random-effect model was used to calculate effect size.
RESULTS: Eight studies (n = 463 participants) were included in the systematic review. The saffron intake was associated with a statistically significant decrease in aspartate aminotransferase (AST) (SMD: -0.18; 95% CI: -0.34, -0.02; I2 = 0%) in comparison to placebo intake. Our results also indicated that saffron consumption did not have a significant effect on alanine aminotransferase (ALT) (SMD: -0.14; 95% CI: -0.36, 0.09; I2 = 47.0%) and alkaline phosphatase (ALP) levels (SMD: 0.14; 95% CI: -0.18, 0.46; I2 = 42.9%) compared to placebo.
CONCLUSIONS: Saffron intake showed beneficial impacts on circulating AST levels. However, larger well-designed RCTs are still needed to clarify the effect of saffron intake on these and other liver enzymes.