Gamma Spectrometry Counting System requires similar counting geometries for the calibration source, reference material and samples. The objectives of this study were to find out the effects of the sample density on 137 Cs activities measurement and propose reasonable corrections. Studies found that the activity of the samples is decreasing when the density of samples increased. Therefore, in order to have a more accurate estimation of samples activities; density corrections should be done either by performs mathematical corrections using equation or by increasing the expanded uncertainty when sample densities deviated from calibration source.
Present of 241Am in the environment is being determined as part of surveillance and research
programs related to nuclear activities. The separation of 241Am from environmental samples was
carried out against the IAEA’s reference material by using an improved in-house radiochemical
separation method through anion exchange column, followed by the electro-deposition on a
stainless steel disc, and finally assayed on alpha spectrometry counting system. The resulting
spectra showed good isolated peak, indicating a good separation of the radionuclide of interest.
The analytical results were in good agreement with the certified value for IAEA-326 and IAEA-368
with the calculated U-score was 0.36 and 0.82, respectively, showing no significant difference
between the experimental and certified value. Using this method, distributions of 241Am in seabed
surface sediment in the Exclusive Economic Zone of East Coast Peninsular Malaysia were studied.
Samples were collected during June 2008 where the concentrations of 241Am were found to be
ranged from < 0.08 to 0.36 Bq/kg, dry weight.
Various environmental samples (seawater, TSS, sediment, rainwater and fly ash) from eight different stations near Kapar coastal area were analyzed. The 210 Po activity concentrations in liquid samples (seawater and rainwater) varied between 0.34 ± 0.03 mBq L-1 to 22.44 ± 0.53 mBq L-1 . Whereas the concentrations in particulate samples (TSS, sediment and fly ash) varied between 43.79 ± 2.31 Bqkg-1 to 364.48 ± 5.43 Bqkg-1 . Results also showed the radioactivity in Kapar coastal is higher than most of Malaysian coast, reaching a factor of seven. This condition is mainly due to the operation of a coal-fired power plant nearby. This study also clarify the variability of 210 Po in environment was strongly influenced from rainfall events especially during wet seasons.
A trial study had been conducted to determine the particulate form of 137 Cs in seawater surrounding East Malaysia. Large volume of seawater was filtered at a flow rate of 15 liters/min through the copper hexacyanoferrates (II) impregnated filters. These filters were ashed and counted using the gamma spectrometry system to determine the dissolved 137 Cs activity. It was found that the particulate form of 137 Cs consists of 20 to 49 % of the total 137 Cs activity concentrations. Some reasonable explanations for higher particulate percentage such as sampling locations, high water flow-rate, and large volume of seawaters were further discussed. It is hope that the result of this study will help to build a better understanding about the usage of impregnated filters to study dissolved 137 Cs activity concentrations.
The presence of 226 Ra in water is a great concern in human life since it can cause health risk to a certain extent. In the state of Kelantan, being known of its granitic area, there is a lack measurement of 226 Ra content in river water, since water is the major source of water supply. According to the INTERIM National Water Quality Standards for Malaysia (INWQS), 226 Ra activity concentration in water cannot exceed 0.1 Bq/L. For this reasons, this research was planned to carry out a systematic measurement of water along Sungai Kelantan. Liquid Scintillation Counting was used for measurement of 226 Ra in water samples from Sungai Kelantan mainly in district of Kuala Krai. In this paper, the results obtained is about 26 water samples, filtered and unfiltered, collected along Sungai Lebir, Sungai Sok and Bukit Sabah. Thus, the assessment activity concentration of 226 Ra in river water was obtained as well as annual effective dose for consumption of drinking water.
The distribution, enrichment and pollution status of metals in sediment cores from the Sabah-Sarawak coastal waters were studied. Seven sediment cores were taken in July 2004 using a gravity box corer. The metals of Cu, Zn and Pb were analyzed by ICP-MS to assess the pollution status of the sediments. The sediment fine fraction and organic carbon content was also analyzed. Enrichment Factor (EF), Geoaccumulation Index (Igeo) and Pollution Load Index (PLI) was calculated as criteria of possible contamination. The results showed that collected sediments were composed with clay, silt and sand as 12 – 74%, 27 – 72% and 0 – 20%, respectively. Meanwhile, organic carbon contents were relatively low and constant over time, based on sediment depth profiles, and it did not exceed 5% at any sampling station. The average metal concentrations in sediment cores at all sampling station were distributed in the ranges of 1.66 ± 1.36 – 6.61 ± 0.12 μgg-1 for Cu, 26.55 ± 1.04 – 57.94 ± 1.58 μgg-1 for Zn and 3.99 ± 0.10 – 14.48 ± 0.32μgg-1 for Pb. According to calculations of EF, Igeo and PLI, it can be concluded that concentrations of Cu, Zn and Pb were not significantly affected by pollution from anthropogenic sources at the seven sampling locations. Thus, the metal content of Cu, Zn and Pb in sediment should not cause pollution problem to the marine environment of Sabah-Sarawak coastal waters and further response measures are not needed.
Spatial and temporal variations in concentrations of several metals and isotopes in sediment cores from around Penang Island, an area with economically important biological resources off the northwest coast of peninsular Malaysia, are reported. Because of a typical, monazite rich mineralogy in surrounding drainage basins, sedimentary metal enrichment factors relative to global average materials, enrichment factors (EFs) of ˃1.0 do not always indicate significant anthropogenic metal inputs. Because of extensive metal solubilization in the hot, organic carbon rich area, EFs of < 1.0 may be observed for several metals despite significant anthropogenic contributions. Comparison of metal-Al relationships in Penang area surface sediments with those in nearby and presumed uncontaminated Strait of Malacca sediments more accurately correct for atypical regional solubilization and mineralogical effects than comparison to global average materials. Such comparisons show concentrations of Cd, Cu, Pb, Ni, Cr, As, Sb, Zn and V have changed by less than a factor of two by anthropogenic discharges. Sedimentary concentration profiles of Pb, Zn and Cu, ratioed to Sc to normalize for variations in grain size and mineralogy, have subsurface maxima suggestive of modest and recently reduced anthropogenic inputs. Mn, U, As and Sb have Sc-normalized concentration profiles clearly affected by diagenetic processes. Sc-normalized profiles of Cr, Th, Ce and Sm show only small changes with depth, confirming insignificant anthropogenic inputs and undetectable postdepositional diagenetic mobility.
Excess ²¹⁰Pb activities and fluxes in Penang area sediments are limited by supply of this radionuclide, in contrast to sediments of both the northwestern U.S.A. and Amazon continental shelves, where they are limited by particle scavenging reactions.²¹⁰Pb activities in sediments of
the shallow, dynamic Penang area often show erratic or unconvincing changes with depth that
cannot be reliably modeled by assuming steady state, constant deposition rate of particles of
uniform chemistry, mineralogy and initial unsupported ²¹⁰Pb, and that mixing is limited to a
recognizable surface layer and resemble a diffusive process.
Kajian ini dijalankan untuk melihat variasi taburan 210Po dan 210Pb melalui profil menegak aktivitinya, serta nisbah aktiviti 210Po/210Pb di dalam teras sedimen yang diambil di beberapa stesen persampelan pesisir pantai perairan Sarawak. Didapati profil taburan radionuklid tersebut dalam teras sedimen adalah berubah-ubah mengikut lokasi persampelan dan telah dibuktikan melalui analisis ANOVA yang menunjukkan bahawa terdapat perbezaan bererti pada 95% aras keyakinan bagi aktiviti 210Po (p = 0.000), 210Pb (p = 0.035) dan 210Po/210Pb (p = 0.000) di semua lokasi kajian. Secara umumnya, aktiviti 210Po dan 210Pb yang diukur masing-masing dalam julat 337 ke 2460 Bq/kg, 11 ke 84 Bq/kg di SR 01; 224 ke 2008 Bq/kg, 6 ke 80 Bq/kg di SR 02; 119 ke 1595 Bq/kg, 6 ke 84 Bq/kg di SR 03; 241 ke 2294 Bq/kg, 5 ke 82 Bq/kg di SR 04 dan 175 ke 1340 Bq/kg, 4 ke 44 Bq/kg di SR 05. Merujuk kepada julat tersebut, didapati aktiviti 210Po adalah lebih tinggi daripada aktiviti 210Pb dengan purata nisbah 210Po/210Pb di semua stesen adalah melebihi satu, iaitu dalam julat 20 ke 35. Variasi profil taburan radionuklid tersebut dipercayai dipengaruhi oleh beberapa faktor sekitaran dan telah dibuktikan terdapat korelasi yang kuat di antara taburan radionuklid dengan komposisi sedimen jenis kelodak (210Po:r = 0.701 dan 210Pb: r = 0.648), kedalaman air (210Po: r = -0.647) dan jarak stesen dari daratan (210Po: r = 0.746 dan 210Pb: r = 0.975). Oleh itu, dapat disimpulkan bahawa faktor-faktor tersebut merupakan penyumbang utama ke atas perubahan yang berlaku kepada taburan 210Po dan 210Pb.