Displaying all 5 publications

Abstract:
Sort:
  1. Hoh BP, Zhang X, Deng L, Yuan K, Yew CW, Saw WY, et al.
    Genome Biol Evol, 2020 12 06;12(12):2245-2257.
    PMID: 33022050 DOI: 10.1093/gbe/evaa207
    North Borneo (NB) is home to more than 40 native populations. These natives are believed to have undergone local adaptation in response to environmental challenges such as the mosquito-abundant tropical rainforest. We attempted to trace the footprints of natural selection from the genomic data of NB native populations using a panel of ∼2.2 million genome-wide single nucleotide polymorphisms. As a result, an ∼13-kb haplotype in the Major Histocompatibility Complex Class II region encompassing candidate genes TSBP1-BTNL2-HLA-DRA was identified to be undergoing natural selection. This putative signature of positive selection is shared among the five NB populations and is estimated to have arisen ∼5.5 thousand years (∼220 generations) ago, which coincides with the period of Austronesian expansion. Owing to the long history of endemic malaria in NB, the putative signature of positive selection is postulated to be driven by Plasmodium parasite infection. The findings of this study imply that despite high levels of genetic differentiation, the NB populations might have experienced similar local genetic adaptation resulting from stresses of the shared environment.
  2. Deng L, Pan Y, Wang Y, Chen H, Yuan K, Chen S, et al.
    Mol Biol Evol, 2022 Feb 03;39(2).
    PMID: 34940850 DOI: 10.1093/molbev/msab361
    Tropical indigenous peoples in Asia (TIA) attract much attention for their unique appearance, whereas their genetic history and adaptive evolution remain mysteries. We conducted a comprehensive study to characterize the genetic distinction and connection of broad geographical TIAs. Despite the diverse genetic makeup and large interarea genetic differentiation between the TIA groups, we identified a basal Asian ancestry (bASN) specifically shared by these populations. The bASN ancestry was relatively enriched in ancient Asian human genomes dated as early as ∼50,000 years before the present and diminished in more recent history. Notably, the bASN ancestry is unlikely to be derived from archaic hominins. Instead, we suggest it may be better modeled as a survived lineage of the initial peopling of Asia. Shared adaptations inherited from the ancient Asian ancestry were detected among the TIA groups (e.g., LIMS1 for hair morphology, and COL24A1 for bone formation), and they are enriched in neurological functions either at an identical locus (e.g., NKAIN3), or different loci in an identical gene (e.g., TENM4). The bASN ancestry could also have formed the substrate of the genetic architecture of the dark pigmentation observed in the TIA peoples. We hypothesize that phenotypic convergence of the dark pigmentation in TIAs could have resulted from parallel (e.g., DDB1/DAK) or genetic convergence driven by admixture (e.g., MTHFD1 and RAD18), new mutations (e.g., STK11), or notably purifying selection (e.g., MC1R). Our results provide new insights into the initial peopling of Asia and an advanced understanding of the phenotypic convergence of the TIA peoples.
  3. Zhang C, Gao Y, Ning Z, Lu Y, Zhang X, Liu J, et al.
    Genome Biol, 2019 10 22;20(1):215.
    PMID: 31640808 DOI: 10.1186/s13059-019-1838-5
    Despite the tremendous growth of the DNA sequencing data in the last decade, our understanding of the human genome is still in its infancy. To understand the implications of genetic variants in the light of population genetics and molecular evolution, we developed a database, PGG.SNV ( https://www.pggsnv.org ), which gives much higher weight to previously under-investigated indigenous populations in Asia. PGG.SNV archives 265 million SNVs across 220,147 present-day genomes and 1018 ancient genomes, including 1009 newly sequenced genomes, representing 977 global populations. Moreover, estimation of population genetic diversity and evolutionary parameters is available in PGG.SNV, a unique feature compared with other databases.
  4. Sartelli M, Chichom-Mefire A, Labricciosa FM, Hardcastle T, Abu-Zidan FM, Adesunkanmi AK, et al.
    World J Emerg Surg, 2017;12:36.
    PMID: 28785302 DOI: 10.1186/s13017-017-0148-z
    [This corrects the article DOI: 10.1186/s13017-017-0141-6.].
  5. Sartelli M, Weber DG, Ruppé E, Bassetti M, Wright BJ, Ansaloni L, et al.
    World J Emerg Surg, 2017;12:35.
    PMID: 28785301 DOI: 10.1186/s13017-017-0147-0
    [This corrects the article DOI: 10.1186/s13017-016-0089-y.].
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links