Displaying all 2 publications

Abstract:
Sort:
  1. Hoang SA, Sarkar B, Seshadri B, Lamb D, Wijesekara H, Vithanage M, et al.
    J Hazard Mater, 2021 08 15;416:125702.
    PMID: 33866291 DOI: 10.1016/j.jhazmat.2021.125702
    The term "Total petroleum hydrocarbons" (TPH) is used to describe a complex mixture of petroleum-based hydrocarbons primarily derived from crude oil. Those compounds are considered as persistent organic pollutants in the terrestrial environment. A wide array of organic amendments is increasingly used for the remediation of TPH-contaminated soils. Organic amendments not only supply a source of carbon and nutrients but also add exogenous beneficial microorganisms to enhance the TPH degradation rate, thereby improving the soil health. Two fundamental approaches can be contemplated within the context of remediation of TPH-contaminated soils using organic amendments: (i) enhanced TPH sorption to the exogenous organic matter (immobilization) as it reduces the bioavailability of the contaminants, and (ii) increasing the solubility of the contaminants by supplying desorbing agents (mobilization) for enhancing the subsequent biodegradation. Net immobilization and mobilization of TPH have both been observed following the application of organic amendments to contaminated soils. This review examines the mechanisms for the enhanced remediation of TPH-contaminated soils by organic amendments and discusses the influencing factors in relation to sequestration, bioavailability, and subsequent biodegradation of TPH in soils. The uncertainty of mechanisms for various organic amendments in TPH remediation processes remains a critical area of future research.
  2. Bolan S, Wijesekara H, Tanveer M, Boschi V, Padhye LP, Wijesooriya M, et al.
    Environ Pollut, 2023 Mar 01;320:121077.
    PMID: 36646409 DOI: 10.1016/j.envpol.2023.121077
    Beryllium (Be) is a relatively rare element and occurs naturally in the Earth's crust, in coal, and in various minerals. Beryllium is used as an alloy with other metals in aerospace, electronics and mechanical industries. The major emission sources to the atmosphere are the combustion of coal and fossil fuels and the incineration of municipal solid waste. In soils and natural waters, the majority of Be is sorbed to soil particles and sediments. The majority of contamination occurs through atmospheric deposition of Be on aboveground plant parts. Beryllium and its compounds are toxic to humans and are grouped as carcinogens. The general public is exposed to Be through inhalation of air and the consumption of Be-contaminated food and drinking water. Immobilization of Be in soil and groundwater using organic and inorganic amendments reduces the bioavailability and mobility of Be, thereby limiting the transfer into the food chain. Mobilization of Be in soil using chelating agents facilitates their removal through soil washing and plant uptake. This review provides an overview of the current understanding of the sources, geochemistry, health hazards, remediation practices, and current regulatory mandates of Be contamination in complex environmental settings, including soil and aquatic ecosystems.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links