Magnesium (Mg2+) is a predominantly intracellular cation that plays significant roles in various enzymatic, membrane, and structural body functions. As a calcium (Ca2+) antagonist, it is imperative for numerous neuromuscular activities. The imbalance of body Mg2+ concentration leads to clinical manifestations ranging from asymptomatic to severe life-threatening complications. Therefore, the contribution of Mg2+ measurement regarding various laboratory and clinical aspects cannot be ignored. Mg2+ is often described as the forgotten analyte. However, its close relationship with body potassium (K+), Ca2+, and phosphate homeostasis proves that Mg2+ imbalance could co-exist as the root cause or the consequence of other electrolyte disorders. Meanwhile, several preanalytical, analytical, and postanalytical aspects could influence Mg2+ measurement. This review highlights Mg2+ measurement's laboratory and clinical issues and some analyte disturbances associated with its imbalance. Understanding this basis could aid clinicians and laboratory professionals in Mg2+ result interpretation and patient management.
The accuracy of diagnostic results in clinical laboratory testing is paramount for informed healthcare decisions and effective patient care. While the focus has traditionally been on the analytical phase, attention has shifted towards optimizing the preanalytical phase due to its significant contribution to total laboratory errors. This review highlights preanalytical errors, their sources, and control measures to improve the quality of laboratory testing. Blood sample quality is a critical concern, with factors such as hemolysis, lipemia, and icterus leading to erroneous results. Sources of preanalytical errors encompass inappropriate test requests, patient preparation lapses, and errors during sample collection, handling, and transportation. Mitigating these errors includes harmonization efforts, education and training programs, automated methods for sample quality assessment, and quality monitoring. Collaboration between laboratory personnel and healthcare professionals is crucial for implementing and sustaining these measures to enhance the accuracy and reliability of diagnostic results, ultimately improving patient care.