Displaying all 8 publications

Abstract:
Sort:
  1. Alsafrani AE, Adeosun WA, Marwani HM, Khan I, Jawaid M, Asiri AM, et al.
    Polymers (Basel), 2021 Sep 30;13(19).
    PMID: 34641198 DOI: 10.3390/polym13193383
    A new class of conductive metal-organic framework (MOF), polyaniline- aluminum succinate (PANI@Al-SA) nanocomposite was prepared by oxidative polymerization of aniline monomer using potassium persulfate as an oxidant. Several analytical techniques such as FTIR, FE-SEM, EDX, XRD, XPS and TGA-DTA were utilized to characterize the obtained MOFs nanocomposite. DC electrical conductivity of polymer-MOFs was determined by four probe method. A bare glassy carbon electrode (GCE) was modified by nafion/PANI@Al-SA, and examined for Zn (II) ion detection. Modified electrode showed improved efficiency by 91.9%. The modified electrode (PANI@Al-SA/nafion/GCE) exhibited good catalytic property and highly selectivity towards Zn(II) ion. A linear dynamic range of 2.8-228.6 µM was obtained with detection limit of LOD 0.59 µM and excellent sensitivity of 7.14 µA µM-1 cm-2. The designed procedure for Zn (II) ion detection in real sample exhibited good stability in terms of repeatability, reproducibility and not affected by likely interferents. Therefore, the developed procedure is promising for quantification of Zn(II) ion in real samples.
  2. Waheed A, Jamal MH, Javed MF, Idlan Muhammad K
    Heliyon, 2024 Apr 30;10(8):e28951.
    PMID: 38655367 DOI: 10.1016/j.heliyon.2024.e28951
    The hydrological regimes of watersheds might be drastically altered by climate change, a majority of Pakistan's watersheds are experiencing problems with water quality and quantity as a result precipitation changes and temperature, necessitating evaluation and alterations to management strategies. In this study, the regional water security in northern Pakistan is examined about anthropogenic climate change on runoff in the Kunhar River Basin (KRB), a typical river in northern Pakistan using Soil and Water Assessment tool (SWAT) and flow durarion curve (FDC). Nine general circulation models (GCMs) were successfully utilized following bias correction under two latest IPCC shared socioeconomic pathways (SSPs) emission scenarios. Correlation coefficients (R2), Nash-Sutcliffe efficiency coefficients (NSE), and the Percent Bias (PBIAS) are all above 0.75. The conclusions demonstrate that the SWAT model precisely simulates the runoff process in the KRB on monthly and daily timescales. For the two emission scenarios of SSP2-4.5 and SSP5-8.5, the mean annual precipitation is predicted to rise by 3.08 % and 5.86 %, respectively, compared to the 1980-2015 baseline. The forecasted rise in mean daily high temperatures is expected to range from 2.08 °C to 3.07 °C, while the anticipated increase in mean daily low temperatures is projected to fall within the range of 2.09 °C-3.39 °C, spanning the years 2020-2099. Under the two SSPs scenarios, annual runoff is estimated to increase by 5.47 % and 7.60 % due to climate change during the same period. Future socioeconomic growth will be supported by a sufficient water supply made possible by the rise in runoff. However, because of climate change, there is a greater possibility of flooding because of increases in both rainfall and runoff. As a result, flood control and development plans for KRB must consider the climate change's possible effects. There is a chance that the peak flow will move backwards relative to the baseline.
  3. Ahmad W, Jafar RMS, Waheed A, Sun H, Kazmi SSAS
    J Clean Prod, 2023 Feb 20;389:135888.
    PMID: 36687279 DOI: 10.1016/j.jclepro.2023.135888
    COVID-19 is a viral disease also comprehended as a coronavirus pandemic that has compelled the world to revisit business strategies to encounter COVID-19 challenges. Over the last decade, ample research has been accomplished on corporate social responsibility (CSR) and circular economy. Nevertheless, a key research gap requires to be filled that how CSR can perform a foremost role in engaging stakeholders like consumers during the COVID-19 era. Drawing from the stakeholder theory, this research endeavors to probe CSR's impact on green purchase intention (GPI) with mediating role of green psychology (GP). Data for the study were gathered from mainland China employing convenience sampling and examined by utilizing SEM (Structural Equation Model). First, the study indicated a direct relationship between CSR and GPI as well as between CSR and GP within three streams, i.e., green trust (GT), green satisfaction (GS), and green perceived value (GPV). It is found that GT, GS, and GPV positively influence GPI whereas the positive mediating relationships of each GP factor were autonomously observed between CSR and GPI, respectively. This research can improve the understanding of the enterprises about consumers and how incorporating green activities may enhance consumers' GPI and GP during the COVID-19 pandemic. This study addresses numerous interesting and insightful implications for strategic management together with certain possibilities for prospective researchers.
  4. Ghumman ASM, Shamsuddin R, Sabir R, Waheed A, Sami A, Almohamadi H
    RSC Adv, 2023 Mar 08;13(12):7867-7876.
    PMID: 36909756 DOI: 10.1039/d3ra00256j
    To improve crop nutrient uptake efficacy (NUE) and better manage fertilization, slow-release fertilizers (SRFs) are developed by either coating the urea granules or making a composite. Several materials have already been developed, nevertheless, scalability of those materials is still a challenge due to their inherit drawbacks (such as hydrophilicity, crystallinity, non-biodegradability, etc.). Herein, we utilized a biodegradable, green and sustainable copolymer produced from industrial waste (sulfur-petroleum industry waste and myrcene-citrus industry waste) to coat the urea using a facile coating method to develop novel SRFs and achieve better agronomic and environmental advantages. The copolymer was first synthesized using a facile, solvent-free one-pot method called inverse vulcanization followed by Fourier transform infrared spectroscopy (FTIR) analysis to confirm the successful reaction between myrcene and sulfur subsequently coating the copolymer on urea granule. The morphology and coating thickness of coated fertilizers were analysed using scanning electron microscopy (SEM), followed by a nitrogen release test in distilled water and a soil burial test to confirm the biodegradability. The nitrogen release test revealed that the SRF with the maximum coating thickness of 1733 μm releases only 16% of its total nitrogen after 4 days of incubation compared to the pristine urea which releases all its nutrient within 1 day. The soil burial test confirms the biodegradability of the copolymer, as after 50 days of incubation in soil the copolymer loses almost 18.25% of its total weight indicating that the copolymer is degrading.
  5. Nawaz M, Taha M, Qureshi F, Ullah N, Selvaraj M, Shahzad S, et al.
    BMC Chem, 2020 Dec;14(1):43.
    PMID: 32685927 DOI: 10.1186/s13065-020-00695-1
    In this study, 5-amino-nicotinic acid derivatives (1-13) have been designed and synthesized to evaluate their inhibitory potential against α-amylase and α-glucosidase enzymes. The synthesized compounds (1-13) exhibited promising α-amylase and α-glucosidase activities. IC50 values for α-amylase activity ranged between 12.17 ± 0.14 to 37.33 ± 0.02 µg/mL ± SEM while for α-glucosidase activity the IC50 values were ranged between 12.01 ± 0.09 to 38.01 ± 0.12 µg/mL ± SEM. In particular, compounds 2 and 4-8 demonstrated significant inhibitory activities against α-amylase and α-glucosidase and the inhibitory potential of these compounds was comparable to the standard acarbose (10.98 ± 0.03 and 10.79 ± 0.17 µg/mL ± SEM, respectively). In addition, the impact of substituent on the inhibitory potential of these compounds was assessed to establish structure activity relationships. Studies in molecular simulations were conducted to better comprehend the binding properties of the compounds. All the synthesized compounds were extensively characterized with modern spectroscopic methods including 1H-NMR, 13C-NMR, FTIR, HR-MS and elemental analysis.
  6. Kou L, Ye N, Waheed A, Auliya RZ, Wu C, Ooi PC, et al.
    Sci Rep, 2023 May 20;13(1):8194.
    PMID: 37210533 DOI: 10.1038/s41598-023-35183-8
    Artificial electronic synapses are commonly used to simulate biological synapses to realize various learning functions, regarded as one of the key technologies in the next generation of neurological computation. This work used a simple spin coating technique to fabricate polyimide (PI):graphene quantum dots(GQDs) memristor structure. As a result, the devices exhibit remarkably stable exponentially decaying postsynaptic suppression current over time, as interpreted in the spike-timing-dependent plasticity phenomenon. Furthermore, with the increase of the applied electrical signal over time, the conductance of the electrical synapse gradually changes, and the electronic synapse also shows plasticity dependence on the amplitude and frequency of the pulse applied. In particular, the devices with the structure of Ag/PI:GQDs/ITO prepared in this study can produce a stable response to the stimulation of electrical signals between millivolt to volt, showing not only high sensitivity but also a wide range of "feelings", which makes the electronic synapses take a step forwards to emulate biological synapses. Meanwhile, the electronic conduction mechanisms of the device are also studied and expounded in detail. The findings in this work lay a foundation for developing brain-like neuromorphic modeling in artificial intelligence.
  7. Ghumman ASM, Shamsuddin R, Alothman ZA, Waheed A, Aljuwayid AM, Sabir R, et al.
    ACS Omega, 2024 Jan 30;9(4):4831-4840.
    PMID: 38313525 DOI: 10.1021/acsomega.3c08361
    Mercury [Hg(II)] contamination is an indefatigable global hazard that causes severe permanent damage to human health. Extensive research has been carried out to produce mercury adsorbents; however, they still face certain challenges, limiting their upscaling. Herein, we report the synthesis of a novel amine-impregnated inverse vulcanized copolymer for effective mercury removal. Poly(S-MA) was prepared using sulfur and methacrylic acid employing the inverse vulcanization method, followed by functionalization. The polyethylenimine (PEI) was impregnated on poly(S-MA) to increase the adsorption active sites. The adsorbent was then characterized byusing Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). FTIR spectroscopy confirmed the formation of the copolymer, and successful impregnation of PEI and SEM revealed the composite porous morphology of the copolymer. Amine-impregnated copolymer [amine@poly(S-MA)] outperformed poly(S-MA) in mercury as it showed 20% superior performance with 44.7 mg/g of mercury adsorption capacity. The adsorption data best fit the pseudo-second-order, indicating that chemisorption is the most effective mechanism, in this case, indicating the involvement of NH2 in mercury removal. The adsorption is mainly a monolayer on a homogeneous surface as indicated by the 0.76 value of Redlich-Peterson exponent (g), which describes the adsorption nature advent from the R2 value of 0.99.
  8. Waheed A, Akram S, Butt FW, Liaqat Z, Siddique M, Anwar F, et al.
    J Chromatogr A, 2024 Nov 08;1739:465503.
    PMID: 39566285 DOI: 10.1016/j.chroma.2024.465503
    Ionic liquids (ILs) have emerged as more desirable liquids than conventional solvents for chemistry, material science, engineering and environmental science. The scientific literature reveals an exponential increase in the number of research projects aimed at exploring the chromatographic features of ionic liquids. The review provides sound scientific data to examine the structural characteristics of ionic liquids that make them ideal for use in chromatography. This contribution is distinctive since it integrates the synthesis, benefits, drawbacks, and possible uses of ionic liquids in several chromatographic separation processes. Keeping the cation the same, the introduction of different anions is also possible, and this strategy leads to the synthesis of a series of different ionic liquids with varying properties. A detailed probe is given on the influence of ionic liquid structure and properties on their chromatographic behavior, both as stationary phase and mobile phase and/or mobile phase additives. Ionic liquid based immobilized stationary phases and their analyte retention mechanisms (hydrogen bonding, electrostatic forces of attraction, π-π stacking, ion exchange, and hydrophilic interactions, etc.) are critically discussed. Finally, a thorough analysis of the literature suggests that IL-based stationary phases may undergo multi-mode and more flexible retention mechanisms. Their dual polarity can facilitate interaction with both polar and non-polar compounds. Similarly, using IL as a mobile phase can offer more pragmatic and sustainable options for enantiomer separation.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links