Sodium alginate/hydroxyapatite/Nano cellulose (SA/HA/NC) nanocomposite films that possess good biocompatibility for bone tissue engineering are prepared by a simple solution casting. HA is one of the most frequently used bioceramic materials to achieve a high biocompatibility. The bionanocomposite films are analysed by XRD, SEM, EDAX and FTIR studies. XRD confirms the existence of fillers in the polymer. FTIR spectrum shows the different functional modes in the bionanocomposite films. The morphology of fillers and bionanocomposite films are obtained through SEM. The inclusion of NC with different concentrations into the biopolymer film improves the tensile strength. As a result, the loading of 5 wt % of NC and 10 wt% of HA in the SA polymer shows high tensile strength when compared to the pure SA, SA filled with 10 wt% of HA and SA loaded with 10 wt% of HA and inclusion of NC (0.5 and 2.5 wt%). The tensile strength (TS) of bionanocomposite film with 10 wt % of HA is increased by 17%. TS of bionanocomposite film with 0.5 and 2.5 wt% of NC is increased by 177 and 277%, whereas TS of bionanocomposite film loaded 5 wt% of NC is increased by 331%. The swelling, biodegradation and biomineralization tests suggest that this bionanocomposite films are hopeful biomaterials for bone tissue engineering.
Nanocellulose prepared from the natural material has a promising wide range of opportunities to obtain the superior material properties towards various end-products. In this research, commercially available natural cotton was treated with aqueous sodium hydroxide solution to eliminate the hemicellulose and lignin, then cellulose was collected. The collected cellulose was subjected to acid hydrolysis using sulfuric acid to obtain nanocellulose. The prepared nanocellulose was further characterized with the aid of Fourier transform infrared spectroscopy, X-ray diffraction and Scanning Electron Microscopy to elucidate the chemical structure, crystallinity and the morphology.