Displaying all 2 publications

Abstract:
Sort:
  1. Tarique J, Sapuan SM, Khalina A
    Sci Rep, 2021 07 06;11(1):13900.
    PMID: 34230523 DOI: 10.1038/s41598-021-93094-y
    This research was set out to explore the development of arrowroot starch (AS) films using glycerol (G) as plasticizer at the ratio of 15, 30, and 45% (w/w, starch basis) using solution casting technique. The developed films were analyzed in terms of physical, structural, mechanical, thermal, environmental, and barrier properties. The incorporation of glycerol to AS film-making solution reduced the brittleness and fragility of films. An increment in glycerol concentration caused an increment in film thickness, moisture content, and solubility in water, whereas density and water absorption were reduced. The tensile strength and modulus of G-plasticized AS films were reduced significantly from 9.34 to 1.95 MPa and 620.79 to 36.08 MPa, respectively, while elongation at break was enhanced from 2.41 to 57.33%. FTIR analysis revealed that intermolecular hydrogen bonding occurred between glycerol and AS in plasticized films compared to control films. The G-plasticized films showed higher thermal stability than control films. The cross-sectional micrographs revealed that the films containing 45% glycerol concentration had higher homogeneity than 15% and 30%. Water vapour permeability of plasticized films increased by an increase in glycerol concentrations. The findings of this research provide insights into the development of bio-degradable food packaging.
  2. Taharuddin NH, Jumaidin R, Mansor MR, Hazrati KZ, Tarique J, Asyraf MRM, et al.
    Polymers (Basel), 2023 Jun 12;15(12).
    PMID: 37376300 DOI: 10.3390/polym15122654
    Dragon fruit, also called pitaya or pitahaya, is in the family Cactaceae. It is found in two genera: 'Selenicereus' and 'Hylocereus'. The substantial growth in demand intensifies dragon fruit processing operations, and waste materials such as peels and seeds are generated in more significant quantities. The transformation of waste materials into value-added components needs greater focus since managing food waste is an important environmental concern. Two well-known varieties of dragon fruit are pitaya (Stenocereus) and pitahaya (Hylocereus), which are different in their sour and sweet tastes. The flesh of the dragon fruit constitutes about two-thirds (~65%) of the fruit, and the peel is approximately one-third (~22%). Dragon fruit peel is believed to be rich in pectin and dietary fibre. In this regard, extracting pectin from dragon fruit peel can be an innovative technology that minimises waste disposal and adds value to the peel. Dragon fruit are currently used in several applications, such as bioplastics, natural dyes and cosmetics. Further research is recommended for diverging its development in various areas and maturing the innovation of its usage.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links