Displaying all 6 publications

Abstract:
Sort:
  1. Islahudin F, Pleass RJ, Avery SV, Ting KN
    J Antimicrob Chemother, 2012 Oct;67(10):2501-5.
    PMID: 22763566 DOI: 10.1093/jac/dks253
    OBJECTIVES: Recent work with the yeast model revealed that the antiprotozoal drug quinine competes with tryptophan for uptake via a common transport protein, causing cellular tryptophan starvation. In the present work, it was hypothesized that similar interactions may occur in malaria patients receiving quinine therapy.

    PATIENTS AND METHODS: A direct observational study was conducted in which plasma levels of drug and amino acids (tryptophan, tyrosine and phenylalanine) were monitored during quinine treatment of malaria patients with Plasmodium falciparum infections.

    RESULTS: Consistent with competition for uptake from plasma into cells, plasma tryptophan and tyrosine levels increased ≥2-fold during quinine therapy. Plasma quinine levels in individual plasma samples were significantly and positively correlated with tryptophan and tyrosine in the same samples. Control studies indicated no effect on phenylalanine. Chloroquine treatment of Plasmodium vivax-infected patients did not affect plasma tryptophan or tyrosine. During quinine treatment, plasma tryptophan was significantly lower (and quinine significantly higher) in patients experiencing adverse drug reactions.

    CONCLUSIONS: Plasma quinine levels during therapy are related to patient tryptophan and tyrosine levels, and these interactions can determine patient responses to quinine. The study also highlights the potential for extrapolating insights directly from the yeast model to human malaria patients.

  2. Mohd Alkaf AL, Simon V, Taweesak C, Abdul Rahman I
    Med J Malaysia, 2015 Apr;70(2):106-7.
    PMID: 26162389
    Barlow's disease has a complex pathology requiring reconstructive surgery. Despite the complicated surgery it holds a positive outcome. We report a successful case of Barlow's disease who underwent mitral valve reconstructive surgery at our centre. Post-operative echocardiography shows a well-functioning repaired mitral valve without significant mitral regurgitation.
  3. Tindall SM, Vallières C, Lakhani DH, Islahudin F, Ting KN, Avery SV
    Sci Rep, 2018 02 06;8(1):2464.
    PMID: 29410428 DOI: 10.1038/s41598-018-20816-0
    Antimalarial drug resistance hampers effective malaria treatment. Critical SNPs in a particular, putative amino acid transporter were recently linked to chloroquine (CQ) resistance in malaria parasites. Here, we show that this conserved protein (PF3D7_0629500 in Plasmodium falciparum; AAT1 in P. chabaudi) is a structural homologue of the yeast amino acid transporter Tat2p, which is known to mediate quinine uptake and toxicity. Heterologous expression of PF3D7_0629500 in yeast produced CQ hypersensitivity, coincident with increased CQ uptake. PF3D7_0629500-expressing cultures were also sensitized to related antimalarials; amodiaquine, mefloquine and particularly quinine. Drug sensitivity was reversed by introducing a SNP linked to CQ resistance in the parasite. Like Tat2p, PF3D7_0629500-dependent quinine hypersensitivity was suppressible with tryptophan, consistent with a common transport mechanism. A four-fold increase in quinine uptake by PF3D7_0629500 expressing cells was abolished by the resistance SNP. The parasite protein localised primarily to the yeast plasma membrane. Its expression varied between cells and this heterogeneity was used to show that high-expressing cell subpopulations were the most drug sensitive. The results reveal that the PF3D7_0629500 protein can determine the level of sensitivity to several major quinine-related antimalarials through an amino acid-inhibitable drug transport function. The potential clinical relevance is discussed.
  4. Islahudin F, Tindall SM, Mellor IR, Swift K, Christensen HE, Fone KC, et al.
    Sci Rep, 2014 Jan 09;4:3618.
    PMID: 24402577 DOI: 10.1038/srep03618
    The major antimalarial drug quinine perturbs uptake of the essential amino acid tryptophan, and patients with low plasma tryptophan are predisposed to adverse quinine reactions; symptoms of which are similar to indications of tryptophan depletion. As tryptophan is a precursor of the neurotransmitter serotonin (5-HT), here we test the hypothesis that quinine disrupts serotonin function. Quinine inhibited serotonin-induced proliferation of yeast as well as human (SHSY5Y) cells. One possible cause of this effect is through inhibition of 5-HT receptor activation by quinine, as we observed here. Furthermore, cells exhibited marked decreases in serotonin production during incubation with quinine. By assaying activity and kinetics of the rate-limiting enzyme for serotonin biosynthesis, tryptophan hydroxylase (TPH2), we showed that quinine competitively inhibits TPH2 in the presence of the substrate tryptophan. The study shows that quinine disrupts both serotonin biosynthesis and function, giving important new insight to the action of quinine on mammalian cells.
  5. Arunkumar GA, Bhavsar D, Li T, Strohmeier S, Chromikova V, Amanat F, et al.
    Nat Commun, 2021 10 25;12(1):6161.
    PMID: 34697321 DOI: 10.1038/s41467-021-26409-2
    A panel of influenza virus-like sequences were recently documented in fish and amphibians. Of these, the Wuhan spiny eel influenza virus (WSEIV) was found to phylogenetically cluster with influenza B viruses as a sister clade. Influenza B viruses have been documented to circulate only in humans, with certain virus isolates found in harbor seals. It is therefore interesting that a similar virus was potentially found in fish. Here we characterize the putative hemagglutinin (HA) and neuraminidase (NA) surface glycoproteins of the WSEIV. Functionally, we show that the WSEIV NA-like protein has sialidase activity comparable to B/Malaysia/2506/2004 influenza B virus NA, making it a bona fide neuraminidase that is sensitive to NA inhibitors. We tested the functionality of the HA by addressing the receptor specificity, stability, preferential airway protease cleavage, and fusogenicity. We show highly specific binding to monosialic ganglioside 2 (GM2) and fusogenicity at a range of different pH conditions. In addition, we found limited antigenic conservation of the WSEIV HA and NA relative to the B/Malaysia/2506/2004 virus HA and NA. In summary, we perform a functional and antigenic characterization of the glycoproteins of WSEIV to assess if it is indeed a bona fide influenza virus potentially circulating in ray-finned fish.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links