Displaying all 3 publications

Abstract:
Sort:
  1. Adzitey F, Huda N, Shariff AHM
    Microorganisms, 2021 Feb 05;9(2).
    PMID: 33562804 DOI: 10.3390/microorganisms9020326
    Meat is an important food source that can provide a significant amount of protein for human development. The occurrence of bacteria that are resistant to antimicrobials in meat poses a public health risk. This study evaluated the occurrence and antimicrobial resistance of E. coli (Escherichia coli) isolated from raw meats, ready-to-eat (RTE) meats and their related samples in Ghana. E. coli was isolated using the USA-FDA Bacteriological Analytical Manual and phenotypic antimicrobial susceptibility test was performed by the disk diffusion method. Of the 200 examined meats and their related samples, 38% were positive for E. coli. Notably, E. coli was highest in raw beef (80%) and lowest in RTE pork (0%). The 45 E. coli isolates were resistant ≥ 50% to amoxicillin, trimethoprim and tetracycline. They were susceptible to azithromycin (87.1%), chloramphenicol (81.3%), imipenem (74.8%), gentamicin (72.0%) and ciprofloxacin (69.5%). A relatively high intermediate resistance of 33.0% was observed for ceftriaxone. E. coli from raw meats, RTE meats, hands of meat sellers and working tools showed some differences and similarities in their phenotypic antimicrobial resistance patterns. Half (51.1%) of the E. coli isolates exhibited multidrug resistance. The E. coli isolates showed twenty-two different resistant patterns, with a multiple antibiotic resistance index of 0.0 to 0.7. The resistant pattern amoxicillin (A, n = 6 isolates) and amoxicillin-trimethoprim (A-TM, n = 6 isolates) were the most common. This study documents that raw meats, RTE meats and their related samples in Ghana are potential sources of antimicrobial-resistant E. coli and pose a risk for the transfer of resistant bacteria to the food chain, environment and humans.
  2. Huda N, Ullah S, Wahab RA, Lani MN, Daud NHA, Shariff AHM, et al.
    BMC Res Notes, 2023 Sep 12;16(1):211.
    PMID: 37700361 DOI: 10.1186/s13104-023-06495-9
    OBJECTIVES: Pollen is a useful tool for identifying the provenance and complex ecosystems surrounding honey production in Malaysian forests. As native key pollinators in Malaysia, Apis dorsata and Heterotrigona itama forage on various plant/pollen species to collect honey. This study aims to generate a dataset that uncovers the presence of these plant/pollen species and their relative abundance in the honey of A. dorsata and H. itama. The information gathered from this study can be used to determine the geographical and botanical origin and authenticity of the honey produced by these two species.

    RESULTS: Sequence data were obtained for both A. dorsata and H. itama. The raw sequence data for A. dorsata was 5 Mb, which was assembled into 5 contigs with a size of 6,098,728 bp, an N50 of 15,534, and a GC average of 57.42. Similarly, the raw sequence data for H. itama was 6.3 Mb, which was assembled into 11 contigs with a size of 7,642,048 bp, an N50 of 17,180, and a GC average of 55.38. In the honey sample of A. dorsata, we identified five different plant/pollen species, with only one of the five species exhibiting a relative abundance of less than 1%. For H. itama, we identified seven different plant/pollen species, with only three of the species exhibiting a relative abundance of less than 1%. All of the identified plant species were native to Peninsular Malaysia, especially the East Coast area of Terengganu.

    DATA DESCRIPTION: Our data offers valuable insights into honey's geographical and botanical origin and authenticity. Metagenomic studies could help identify the plant species that honeybees forage and provide preliminary data for researchers studying the biological development of A. dorsata and H. itama. The identification of various flowers from the eDNA of honey that are known for their medicinal properties could aid in regional honey with accurate product origin labeling, which is crucial for guaranteeing product authenticity to consumers.

  3. Ullah S, Huyop F, Huda N, Ab Wahab R, Hamid AAA, Mohamad MAN, et al.
    Heliyon, 2024 Feb 29;10(4):e26469.
    PMID: 38404777 DOI: 10.1016/j.heliyon.2024.e26469
    Zebrafish is a developing vertebrate model with several advantages, including its small size, and high experimental efficiency. Malaysia exhibit one of the highest diabetes rates in the Western Pacific and incurring an annual cost of 600 million US dollars. The objective of the study is to determine the antidiabetic properties of green honey (GH) using a zebrafish model. Adult zebrafish, aged 3-4 months, were subjected to overfeeding and treated with streptozotocin (STZ) through intraperitoneal injection (IP) on days 7 and 9. The study assessed the oral sucrose tolerance test (OSTT) and the anti-diabetic effects of green honey. The evaluation was conducted at three time points: 30, 60, and 120 min after treatment and sucrose administration. The study utilised a model with a sample size of 5. The study was performed in six groups. These groups are (1) Normal control (non-diabetic, no intervention), (2) Normal control + GH (non-diabetic, supplemented with GH 3 μl), (3) DM control (diabetic, no intervention), (4) DM Gp1 (diabetic, 3 μL GH), (5) DM Gp2 (diabetic, 6 μ L GH), (6) DM Acarbose (diabetic, treated with acarbose). Fasting blood glucose levels for non-diabetic (non-DM) and diabetic (DM) groups were evaluated before and after the 10 days of diabetic induction. DM groups (excess of food and two injections of STZ) have caused a significant increment in the fasting blood glucose to 11.55 mmol/l (p 
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links