Displaying all 2 publications

Abstract:
Sort:
  1. Mustapha M, Nassir CMNCM, Aminuddin N, Safri AA, Ghazali MM
    Front Physiol, 2019;10:1317.
    PMID: 31708793 DOI: 10.3389/fphys.2019.01317
    Cerebral small vessel disease (CSVD) refers to a spectrum of clinical and imaging findings resulting from pathological processes of various etiologies affecting cerebral arterioles, perforating arteries, capillaries, and venules. Unlike large vessels, it is a challenge to visualize small vessels in vivo, hence the difficulty to directly monitor the natural progression of the disease. CSVD might progress for many years during the early stage of the disease as it remains asymptomatic. Prevalent among elderly individuals, CSVD has been alarmingly reported as an important precursor of full-blown stroke and vascular dementia. Growing evidence has also shown a significant association between CSVD's radiological manifestation with dementia and Alzheimer's disease (AD) pathology. Although it remains contentious as to whether CSVD is a cause or sequelae of AD, it is not far-fetched to posit that effective therapeutic measures of CSVD would mitigate the overall burden of dementia. Nevertheless, the unifying theory on the pathomechanism of the disease remains elusive, hence the lack of effective therapeutic approaches. Thus, this chapter consolidates the contemporary insights from numerous experimental animal models of CSVD, to date: from the available experimental animal models of CSVD and its translational research value; the pathomechanical aspects of the disease; relevant aspects on systems biology; opportunities for early disease biomarkers; and finally, converging approaches for future therapeutic directions of CSVD.
  2. Nassir CMNCM, Ghazali MM, Safri AA, Jaffer U, Abdullah WZ, Idris NS, et al.
    Brain Sci, 2021 Jan 20;11(2).
    PMID: 33498429 DOI: 10.3390/brainsci11020133
    Asymptomatic (or "silent") manifestations of cerebral small vessel disease (CSVD) are widely recognized through incidental findings of white matter hyperintensities (WMHs) as a result of magnetic resonance imaging (MRI). This study aims to examine the potential associations of surrogate markers for the evaluation of white matter integrity in CSVD among asymptomatic individuals through a battery of profiling involving QRISK2 cardiocerebrovascular risk prediction, neuroimaging, neurocognitive evaluation, and microparticles (MPs) titers. Sixty asymptomatic subjects (mean age: 39.83 ± 11.50 years) with low to moderate QRISK2 scores were recruited and underwent neurocognitive evaluation for memory and cognitive performance, peripheral venous blood collection for enumeration of selected MPs subpopulations, and 3T MRI brain scan with specific diffusion MRI (dMRI) sequences inclusive of diffusion tensor imaging (DTI). WMHs were detected in 20 subjects (33%). Older subjects (mean age: 46.00 ± 12.00 years) had higher WMHs prevalence, associated with higher QRISK2 score and reduced processing speed. They also had significantly higher mean percentage of platelet (CD62P)- and leukocyte (CD62L)-derived MPs. No association was found between reduced white matter integrity-especially at the left superior longitudinal fasciculus (LSLF)-with age and neurocognitive function; however, LSLF was associated with higher QRISK2 score, total MPs, and CD62L- and endothelial cell-derived MPs (CD146). Therefore, this study establishes these multimodal associations as potential surrogate markers for "silent" CSVD manifestations in the well-characterized cardiocerebrovascular demographic of relatively young, neurologically asymptomatic adults. Furthermore, to the best of our knowledge, this study is the first to exhibit elevated MP counts in asymptomatic CSVD (i.e., CD62P and CD62L), which warrants further delineation.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links