Displaying 1 publication

Abstract:
Sort:
  1. Rezk AR, Ahmed H, Brain TL, Castro JO, Tan MK, Langley J, et al.
    J Phys Chem Lett, 2020 Jun 18;11(12):4655-4661.
    PMID: 32453583 DOI: 10.1021/acs.jpclett.0c01227
    We reveal a unique mechanism by which pure water can be dissociated to form free radicals without requiring catalysts, electrolytes, or electrode contact by means of high-frequency nanometer-amplitude electromechanical surface vibrations in the form of surface acoustic waves (SAWs) generated on a piezoelectric substrate. The physical undulations associated with these mechanical waves, in concert with the evanescent electric field arising from the piezoelectric coupling, constitute half-wavelength "nanoelectrochemical cells" in which liquid is trapped within the SAW potential minima with vertical dimensions defined by the wave amplitude (∼10 nm), thereby forming highly confined polarized regions with intense electric field strengths that enable the breakdown of water. The ions and free radicals that are generated rapidly electromigrate under the high field intensity in addition to being convectively transported away from the cells by the bulk liquid recirculation generated by the acoustic excitation, thereby overcoming mass transport limitations that lead to ion recombination.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links