In this paper, we propose a metal-polydopamine (MPDA) framework with a specific molecular probe which appears to be the most promising approach to a strong fluorescence quencher. The MPDA framework quenching ability toward various organic fluorophore such as aminoethylcoumarin acetate, 6-carboxyfluorescein (FAM), carboxyteramethylrhodamine, and Cy5 are used to establish a fluorescent biosensor that can selectively recognize Hg2+ and Ag+ ions. The fluorescent quenching efficiency was sufficient to achieve more than 96%. The MPDA framework also exhibits different affinities with ssDNA and dsDNA. In addition, the FAM-labeled ssDNA was adsorbed onto the MPDA framework, based on their interaction with the complex formed between MPDA frameworks/ssDNA taken as a sensing platform. By taking advantage of this sensor, highly sensitive and selective determination of Hg2+ and Ag+ ions is achieved through exonuclease III signal amplification activity. The detection limits of Hg2+ and Ag+ achieved to be 1.3 and 34 pM, respectively, were compared to co-existing metal ions and graphene oxide-based sensors. Furthermore, the potential applications of this study establish the highly sensitive fluorescence detection targets in environmental and biological fields.
A label -free DNAzyme amplified biosensor is found to be highly selective and sensitive towards fluorescent detection of Pb2+ ions in aqueous media. The DNAzyme complex has designed by the hybridization of the enzyme and substrate strand. In the presence of Pb2+, the DNAzyme activated and cleaved the substrate strand of RNA site (rA) into two oligonucleotide fragments. Further, the free fragment was hybridized with a complementary strand on the surface of MBs. After magnetic separation, SYBER Green I was added and readily intercalate with the dsDNA to gives a bright fluorescence signal with intensity directly proportional to the concentration of Pb2+ions. A detection limit of 5 nM in Pb2+ the detection range 0 to 500 nM was obtained. This label- free fluorescent biosensor has been successfully applied to the determination of environmental water samples. Then results open up the possibility for real-time quantitative detection of Pb2+ with convenient potential applications in the biological and environmental field. Graphical Abstract.