MATERIALS AND METHODS: One hundred and twelve mice were given incision wounds and infected with methicillin-resistant Staphylococcus aureus (MRSA). The study used a factorial design with two factors: The type of therapy (n = 7) and irradiation time (days 1, 2, 4, and 6). The mice were divided into seven therapy groups: Control group with NaCl, control with Sofra-tulle® treatment, red-laser therapy (650 nm, 3.5 J/cm2), blue-laser therapy (405 nm, 3.5 J/cm2), ozone therapy, red-laser therapy (650 nm, 3.5 J/cm2) with ozone, and blue-laser therapy (405 nm, 3.5 J/cm2) with ozone. This therapy was performed using irradiation perpendicular to the wound area. The photosensitizer used was curcumin 10 mg/mL, which was applied to the wound area before exposure to a laser and ozone. The ozone concentration was 0.011 mg/L with a flow time of 80 s. The test parameters were the number of collagens, bacterial colonies, lymphocytes, monocytes, and wound length measurement to determine their acceleration effects on wound healing. Data were analyzed by a two-way (factorial) analysis of variance test.
RESULTS: Acceleration of wound healing was significantly different between treatments with a laser or a laser-ozone combination and treatment using 95% sodium chloride (NaCl) and Sofra-tulle®. On day 6, the blue-laser with ozone treatment group had efficiently increased the number of bacteria and reduced the wound length, and the red-laser treatment with ozone increased the amount of collagen. In addition, the red-laser also reduced the number of lymphocytes and monocytes, which can have an impact on accelerating wound healing. Blue-laser therapy was very effective for increasing the number of epithelia.
CONCLUSION: The blue- and red-laser combined with ozone treatments effectively accelerated the healing of incisional wounds infected with MRSA bacteria.