Displaying all 4 publications

Abstract:
Sort:
  1. Tan XF, Somidin F, McDonald SD, Bermingham MJ, Maeno H, Matsumura S, et al.
    Materials (Basel), 2022 Jan 10;15(2).
    PMID: 35057226 DOI: 10.3390/ma15020510
    The complex reaction between liquid solder alloys and solid substrates has been studied ex-situ in a few studies, utilizing creative setups to "freeze" the reactions at different stages during the reflow soldering process. However, full understanding of the dynamics of the process is difficult due to the lack of direct observation at micro- and nano-meter resolutions. In this study, high voltage transmission electron microscopy (HV-TEM) is employed to observe the morphological changes that occur in Cu6Sn5 between a Sn-3.0 wt%Ag-0.5 wt%Cu (SAC305) solder alloy and a Cu substrate in situ at temperatures above the solidus of the alloy. This enables the continuous surveillance of rapid grain boundary movements of Cu6Sn5 during soldering and increases the fundamental understanding of reaction mechanisms in solder solid/liquid interfaces.
  2. Somidin F, Maeno H, Tran XQ, D McDonald S, Mohd Salleh MAA, Matsumura S, et al.
    Materials (Basel), 2018 Nov 09;11(11).
    PMID: 30423946 DOI: 10.3390/ma11112229
    In-situ observations of the polymorphic transformation in a single targeted Cu₆Sn₅ grain constrained between Sn-0.7 wt % Cu solder and Cu-Cu₃Sn phases and the associated structural evolution during a solid-state thermal cycle were achieved via a high-voltage transmission electron microscope (HV-TEM) technique. Here, we show that the monoclinic η'-Cu₆Sn₅ superlattice reflections appear in the hexagonal η-Cu₆Sn₅ diffraction pattern upon cooling to isothermal 140 °C from 210 °C. The in-situ real space imaging shows that the η'-Cu₆Sn₅ contrast pattern is initiated at the grain boundary. This method demonstrates a new approach for further understanding the polymorphic transformation behavior on a real solder joint.
  3. Salleh MA, Gourlay CM, Xian JW, Belyakov SA, Yasuda H, McDonald SD, et al.
    Sci Rep, 2017 Jan 12;7:40010.
    PMID: 28079120 DOI: 10.1038/srep40010
    The development of microstructure during melting, reactive wetting and solidification of solder pastes on Cu-plated printed circuit boards has been studied by synchrotron radiography. Using Sn-3.0Ag-0.5Cu/Cu and Sn-0.7Cu/Cu as examples, we show that the interfacial Cu6Sn5 layer is present within 0.05 s of wetting, and explore the kinetics of flux void formation at the interface between the liquid and the Cu6Sn5 layer. Quantification of the nucleation locations and anisotropic growth kinetics of primary Cu6Sn5 crystals reveals a competition between the nucleation of Cu6Sn5 in the liquid versus growth of Cu6Sn5 from the existing Cu6Sn5 layer. Direct imaging confirms that the β-Sn nucleates at/near the Cu6Sn5 layer in Sn-3.0Ag-0.5Cu/Cu joints.
  4. Amli SFM, Salleh MAAM, Aziz MSA, Yasuda H, Nogita K, Abdullah MMAB, et al.
    Materials (Basel), 2023 Jun 13;16(12).
    PMID: 37374543 DOI: 10.3390/ma16124360
    The growth and formation of primary intermetallics formed in Sn-3.5Ag soldered on copper organic solderability preservative (Cu-OSP) and electroless nickel immersion gold (ENIG) surface finish after multiple reflows were systematically investigated. Real-time synchrotron imaging was used to investigate the microstructure, focusing on the in situ growth behavior of primary intermetallics during the solid-liquid-solid interactions. The high-speed shear test was conducted to observe the correlation of microstructure formation to the solder joint strength. Subsequently, the experimental results were correlated with the numerical Finite Element (FE) modeling using ANSYS software to investigate the effects of primary intermetallics on the reliability of solder joints. In the Sn-3.5Ag/Cu-OSP solder joint, the well-known Cu6Sn5 interfacial intermetallic compounds (IMCs) layer was observed in each reflow, where the thickness of the IMC layer increases with an increasing number of reflows due to the Cu diffusion from the substrate. Meanwhile, for the Sn-3.5Ag/ENIG solder joints, the Ni3Sn4 interfacial IMC layer was formed first, followed by the (Cu, Ni)6Sn5 IMC layer, where the formation was detected after five cycles of reflow. The results obtained from real-time imaging prove that the Ni layer from the ENIG surface finish possessed an effective barrier to suppress and control the Cu dissolution from the substrates, as there is no sizeable primary phase observed up to four cycles of reflow. Thus, this resulted in a thinner IMC layer and smaller primary intermetallics, producing a stronger solder joint for Sn-3.5Ag/ENIG even after the repeated reflow process relative to the Sn-3.5Ag/Cu-OSP joints.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links