Displaying all 2 publications

Abstract:
Sort:
  1. Strassheim V, Newton JL, Tan MP, Frith J
    J Hypertens, 2016 Oct;34(10):1933-41.
    PMID: 27442791 DOI: 10.1097/HJH.0000000000001043
    OBJECTIVE: The systematic review and meta-analysis aims to determine the efficacy and safety of droxidopa in the treatment of orthostatic hypotension, following its recent approvals in the United States.

    METHODS: MEDLINE, EMBASE, PubMed, Cochrane Controlled Trials Register, Web of Science, ProQuest, and the WHO Clinical Trials Registry were searched. Studies were included if they randomized adults with orthostatic hypotension to droxidopa or to control, and outcomes related to symptoms, daily activity, blood pressure, or adverse events. Data were extracted independently by two reviewers. Risk of bias was judged against the Cochrane risk of bias tool and quality of evidence measured using Grading of Recommendations Assessment, Development and Evaluation criteria. A fixed-effects model was used for pooled analysis.

    RESULTS: Of 224 identified records, four studies met eligibility, with a pooled sample size of 494. Study duration was between 1 and 8 weeks. Droxidopa was effective at reducing dizziness [mean difference -0.97 (95% confidence interval -1.51, -0.42)], overall symptoms [-0.52 (-0.98, -0.06)] and difficulty with activity [-0.86 (-1.34, -0.38)]. Droxidopa was also effective at improving standing SBP [3.9 (0.1, 7.69)]. Rates of adverse events were similar between droxidopa and control groups, including supine hypertension [odds ratio 1.93 (0.87, 4.25)].

    CONCLUSION: Droxidopa is well tolerated and effective at reducing the symptoms associated with neurogenic orthostatic hypotension without increasing the risk of supine hypertension.

    REGISTRATION: PROSPERO ID CRD42015024612.

  2. Owen CM, Bacardit J, Tan MP, Saedon NI, Goh CH, Newton JL, et al.
    Exp Physiol, 2024 Nov 11.
    PMID: 39526963 DOI: 10.1113/EP091876
    Gravity, an invisible but constant force , challenges the regulation of blood pressure when transitioning between postures. As physiological reserve diminishes with age, individuals grow more susceptible to such stressors over time, risking inadequate haemodynamic control observed in orthostatic hypotension. This prevalent condition is characterized by drops in blood pressure upon standing; however, the contrary phenomenon of blood pressure rises has recently piqued interest. Expanding on the currently undefined orthostatic hypertension, our study uses continuous non-invasive cardiovascular data to explore the full spectrum of blood pressure profiles and their associated frailty outcomes in community-dwelling older adults. Given the richness of non-invasive beat-to-beat data, artificial intelligence (AI) offers a solution to detect the subtle patterns within it. Applying machine learning to an existing dataset of community-based adults undergoing postural assessment, we identified three distinct clusters (iOHYPO, OHYPO and OHYPER) akin to initial and classic orthostatic hypotension and orthostatic hypertension, respectively. Notably, individuals in our OHYPER cluster exhibited indicators of frailty and sarcopenia, including slower gait speed and impaired balance. In contrast, the iOHYPO cluster, despite transient drops in blood pressure, reported fewer fallers and superior cognitive performance. Surprisingly, those with sustained blood pressure deficits outperformed those with sustained rises, showing greater independence and higher Fried frailty scores. Working towards more refined definitions, our research indicates that AI approaches can yield meaningful blood pressure morphologies from beat-to-beat data. Furthermore, our findings support orthostatic hypertension as a distinct clinical entity, with frailty implications suggesting that it is worthy of further investigation.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links