Displaying all 4 publications

Abstract:
Sort:
  1. El Jery A, Salman HM, Al-Khafaji RM, Nassar MF, Sillanpää M
    Molecules, 2023 Mar 14;28(6).
    PMID: 36985620 DOI: 10.3390/molecules28062649
    Hydrogen production using polymer membrane electrolyzers is an effective and valuable way of generating an environmentally friendly energy source. Hydrogen and oxygen generated by electrolyzers can power drone fuel cells. The thermodynamic analysis of polymer membrane electrolyzers to identify key losses and optimize their performance is fundamental and necessary. In this article, the process of the electrolysis of water by a polymer membrane electrolyzer in combination with a concentrated solar system in order to generate power and hydrogen was studied, and the effect of radiation intensity, current density, and other functional variables on the hydrogen production was investigated. It was shown that with an increasing current density, the voltage generation of the electrolyzer increased, and the energy efficiency and exergy of the electrolyzer decreased. Additionally, as the temperature rose, the pressure dropped, the thickness of the Nafion membrane increased, the voltage decreased, and the electrolyzer performed better. By increasing the intensity of the incoming radiation from 125 W/m2 to 320 W/m2, the hydrogen production increased by 111%, and the energy efficiency and exergy of the electrolyzer both decreased by 14% due to the higher ratio of input electric current to output hydrogen. Finally, machine-learning-based predictions were conducted to forecast the energy efficiency, exergy efficiency, voltage, and hydrogen production rate in different scenarios. The results proved to be very accurate compared to the analytical results. Hyperparameter tuning was utilized to adjust the model parameters, and the models' results showed an MAE lower than 1.98% and an R2 higher than 0.98.
  2. Li B, Amin AH, Ali AM, Isam M, Lagum AA, Sabugaa MM, et al.
    Chemosphere, 2023 Sep;336:139208.
    PMID: 37321458 DOI: 10.1016/j.chemosphere.2023.139208
    UV and solar-based photocatalytic degradation of 2,4-dichlorophenol (2,4-DCP) as an organic contaminant in ceramics industry wastewater by ZnS and Fe-doped ZnS NPs was the focus of this research. Nanoparticles were prepared using a chemical precipitation process. The cubic, closed-packed structure of undoped ZnS and Fe-doped ZnS NPs was formed in spherical clusters, according to XRD and SEM investigations. According to optical studies, the optical band gaps of pure ZnS and Fe-doped ZnS nanoparticles are 3.35 and 2.51 eV, respectively, and Fe doping increased the number of carriers with high mobility, improved carrier separation and injection efficiency, and increased photocatalytic activity under UV or visible light. Doping of Fe increased the separation of photogenerated electrons and holes and facilitated charge transfer, according to electrochemical impedance spectroscopy investigations. Photocatalytic degradation studies revealed that in the present pure ZnS and Fe-doped ZnS nanoparticles, 100% treatment of 120 mL of 15 mg/L phenolic compound was obtained after 55- and 45-min UV-irradiation, respectively, and complete treatment was attained after 45 and 35-min solar light irradiation, respectively. Because of the synergistic effects of effective surface area, more effective photo-generated electron and hole separation efficiency, and enhanced electron transfer, Fe-doped ZnS demonstrated high photocatalytic degradation performance. The study of Fe-doped ZnS's practical photocatalytic treatment capability for removing 120 mL of 10 mg/L 2,4-DCP solution made from genuine ceramic industrial wastewater revealed Fe-doped ZnS's excellent photocatalytic destruction of 2,4-DCP from real industrial wastewater.
  3. Samawi KA, Mohammed BA, Salman EA, Mahmoud HMA, Sameen AZ, Mohealdeen SM, et al.
    Phys Chem Chem Phys, 2024 Mar 20;26(12):9284-9294.
    PMID: 38469699 DOI: 10.1039/d3cp05716j
    Sulfur hosts and conversion catalysts based on NiCo-LDHs exhibit potential for improving the performance of Li-S batteries. Nevertheless, their low electron conductivity and aggregation propensity restrict their applicability. This investigation employs a temporary scaffold of ZIF-67 to produce a nanotube assembly of Ni-Co-LDH encapsulated within an N-doped graphene sponge. The electrochemically developed interface has an extended active surface area, and the clumping of LDH nanosheets is effectively inhibited by the design of the nanotube arrangement. Furthermore, the incorporation of nitrogen within the structure of graphene results in a boost of electrical conductivity and provides an increased quantity of active sites. Interfacial electron transport is facilitated by the interfacial rearrangement of charges resulting from p-n heterojunctions and fosters redox activity. In this study, the researchers have presented the double role played by the nickel-cobalt layered double hydroxide (NiCo-LDH) nanotubes in improving the polysulphide (LiPS) conversion and decreasing the movement of the sulphur (S) ions by forming surface-bound intermediates. The battery that was fabricated using the above composite cathode mixture showed a higher energy storage ability, i.e., 1190.0 mA h g-1 at J = 0.2. Furthermore, the battery showed a significantly higher capacity to rapidly supply energy and displayed a rate capacity of 670.1 mA h g-1 at J = 5C. Also, the above battery displayed a longer cycle life, with 1000 charge-discharge cycles and the deterioration rate of 0.029% for each cycle.
  4. Sedigh SS, Gholipour A, Zandi M, Saeed BQ, Al-Naqeeb BZT, Al-Tameemi NMA, et al.
    World J Microbiol Biotechnol, 2023 Aug 11;39(10):275.
    PMID: 37563327 DOI: 10.1007/s11274-023-03724-y
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links