Displaying all 5 publications

Abstract:
Sort:
  1. Isa, A.I.M., Dahlan, N.Y., Musirin, I., Naidu, K.
    MyJurnal
    Power systems are usually exposed to numerous disturbances that can have an adverse effect on system
    operation. Insufficient generation could lead to frequency declination and subsequently system collapse
    in the absence of immediate control action. Frequency Load Shedding (UFLS) is a technique commonly
    applied to overcome overloading and restore the system frequency. This paper presents an adaptive load
    shedding approach to determine the best location with minimum amount of load to be shed. Load Ranking
    Fuzzy Logic (LRFL) is used to rank the load based on their sensitivity and stability index. In order to
    achieve this, the proposed strategy is verified using 11 kV Malaysian distributed network consisting of
    different type of loads connected with single and multiple Distribution Generator (DG). The simulation
    results show that the proposed strategy successfully stabilizes the system’s frequency.
  2. Sivaraju SS, Senthilkumar T, Sankar R, Anuradha T, Usha S, Bin Musirin I
    ISA Trans, 2024 Apr;147:215-226.
    PMID: 38402102 DOI: 10.1016/j.isatra.2024.01.034
    A hybrid technique is proposed in this manuscript for the optimal design of an induction motor (IM) drive for the dynamic load profiles during torque and flux control. The proposed hybrid method combines a Ladder-Spherical-Evolution-Search-Algorithm (LSE) and a recalling-enhanced recurrent-neural network (RERNN), which is called an LSE-RERNN technique. The major objective of the proposed method is to minimize IM losses while maintaining control over speed and torque. The proposed method effectively tunes the gain parameter of the PI controller for flux and torque regulation. The LSE methodgenerates a set of gain parameters optimally predicted by RERNN. The method reduces losses without prior knowledge of load profiles, achieving energy savings for steady-state optimum flux. The performance of the proposed technique is done in the MATLAB and is compared with different existing techniques. The value of the proposed method for the mean is 0.328, the standard deviation (SD) is 0.00334, and the median is 0.4173. The loss of the proposed method is much less than 0.3 W while compared to different existing approaches. Moreover, the computation time of the proposed approach is lesser than the existing techniques.
  3. Rahman HA, Harun SW, Arof H, Irawati N, Musirin I, Ibrahim F, et al.
    J Biomed Opt, 2014 May;19(5):057009.
    PMID: 24839996 DOI: 10.1117/1.JBO.19.5.057009
    An enhanced dental cavity diameter measurement mechanism using an intensity-modulated fiber optic displacement sensor (FODS) scanning and imaging system, fuzzy logic as well as a single-layer perceptron (SLP) neural network, is presented. The SLP network was employed for the classification of the reflected signals, which were obtained from the surfaces of teeth samples and captured using FODS. Two features were used for the classification of the reflected signals with one of them being the output of a fuzzy logic. The test results showed that the combined fuzzy logic and SLP network methodology contributed to a 100% classification accuracy of the network. The high-classification accuracy significantly demonstrates the suitability of the proposed features and classification using SLP networks for classifying the reflected signals from teeth surfaces, enabling the sensor to accurately measure small diameters of tooth cavity of up to 0.6 mm. The method remains simple enough to allow its easy integration in existing dental restoration support systems.
  4. Othman MM, Abd Rahman N, Musirin I, Fotuhi-Firuzabad M, Rajabi-Ghahnavieh A
    ScientificWorldJournal, 2015;2015:731013.
    PMID: 25879068 DOI: 10.1155/2015/731013
    This paper introduces a novel multiobjective approach for capacity benefit margin (CBM) assessment taking into account tie-line reliability of interconnected systems. CBM is the imperative information utilized as a reference by the load-serving entities (LSE) to estimate a certain margin of transfer capability so that a reliable access to generation through interconnected system could be attained. A new Pareto-based evolutionary programming (EP) technique is used to perform a simultaneous determination of CBM for all areas of the interconnected system. The selection of CBM at the Pareto optimal front is proposed to be performed by referring to a heuristic ranking index that takes into account system loss of load expectation (LOLE) in various conditions. Eventually, the power transfer based available transfer capability (ATC) is determined by considering the firm and nonfirm transfers of CBM. A comprehensive set of numerical studies are conducted on the modified IEEE-RTS79 and the performance of the proposed method is numerically investigated in detail. The main advantage of the proposed technique is in terms of flexibility offered to an independent system operator in selecting an appropriate solution of CBM simultaneously for all areas.
  5. Ramli NF, Kamari NAM, Abd Halim S, Zulkifley MA, Sahri MSM, Musirin I
    J Electr Eng Technol, 2022;17(1):85-95.
    PMID: 38624623 DOI: 10.1007/s42835-021-00859-6
    This study presents the efficiency of the wind-driven optimisation (WDO) approach in solving non-convex economic dispatch problems with point-valve effect. The best economic dispatch for a power system is one wherein the system can generate energy at a low cost. The calculation of the generating cost is subject to a number of constraints, such as the power demand for the entire system and the generation limit for each generator unit in the system. In addition, the system should also produce low power loss. The WDO optimisation technique is developed based on the concept of natural wind movement, which serves as a stabiliser to equalise the inequality of air pressure in the atmosphere. One major advantage of WDO over other techniques is its search accuracy. The proposed algorithm has been implemented in two systems, namely, the 10-generator and 40-generator systems. Both systems were tested in a Matlab environment. To highlight the capabilities of WDO, the results using this proposed technique are compared with the results obtained using flower pollination algorithm, moth flame optimisation, particle swarm optimisation and evolutionary programming techniques to determine the efficiency of the proposed approach in solving economic dispatch. The simulation results show the capability of WDO in determining the optimal power generation value with minimum generation cost and low rate of power loss.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links