Displaying all 4 publications

Abstract:
Sort:
  1. Hameed SS, Hassan R, Muhammad FF
    PLoS One, 2017;12(11):e0187371.
    PMID: 29095904 DOI: 10.1371/journal.pone.0187371
    In this work, gene expression in autism spectrum disorder (ASD) is analyzed with the goal of selecting the most attributed genes and performing classification. The objective was achieved by utilizing a combination of various statistical filters and a wrapper-based geometric binary particle swarm optimization-support vector machine (GBPSO-SVM) algorithm. The utilization of different filters was accentuated by incorporating a mean and median ratio criterion to remove very similar genes. The results showed that the most discriminative genes that were identified in the first and last selection steps included the presence of a repetitive gene (CAPS2), which was assigned as the gene most highly related to ASD risk. The merged gene subset that was selected by the GBPSO-SVM algorithm was able to enhance the classification accuracy.
  2. Muhammad FF, Yahya MY, Ketuly KA, Muhammad AJ, Sulaiman K
    PMID: 27372510 DOI: 10.1016/j.saa.2016.06.031
    In this work the optical response, spectroscopic behaviour, and optoelectronic properties of solution and solid state composite systems based on α,ω-dihexylsexithiophene/tris(8-hydroxyquinolinate) gallium (DH6T/Gaq3) are studied upon the incorporation of different molar percentages of Gaq3. UV-vis, PL, FTIR spectrophotometers and SEM technique were utilized to perform the investigations. The results showed a reduced energy band (Eg) (from 2.33eV to 1.83eV) and a broadened absorption spectrum for the blend system when 29.8% molar of Gaq3 was incorporated. These were attributed to the enhanced intermolecular interactions that are brought about by the increased strength of π-π overlap between the molecular moieties. A mathematical formula was developed to interpret the non-monotonic change occurred in Eg, while numerical calculations have been made to assign the type and nature of the electronic transitions governing the spectroscopic behaviour of the system. The results were elaborated and comprehensively discussed in terms of the exciton generation, energy band theory, molecular interactions, and spatial geometry.
  3. Muhammad FF, Yahya MY, Hameed SS, Aziz F, Sulaiman K, Rasheed MA, et al.
    PLoS One, 2017;12(8):e0182925.
    PMID: 28793325 DOI: 10.1371/journal.pone.0182925
    In this research work, numerical simulations are performed to correlate the photovoltaic parameters with various internal and external factors influencing the performance of solar cells. Single-diode modeling approach is utilized for this purpose and theoretical investigations are compared with the reported experimental evidences for organic and inorganic solar cells at various electrical and thermal conditions. Electrical parameters include parasitic resistances (Rs and Rp) and ideality factor (n), while thermal parameters can be defined by the cells temperature (T). A comprehensive analysis concerning broad spectral variations in the short circuit current (Isc), open circuit voltage (Voc), fill factor (FF) and efficiency (η) is presented and discussed. It was generally concluded that there exists a good agreement between the simulated results and experimental findings. Nevertheless, the controversial consequence of temperature impact on the performance of organic solar cells necessitates the development of a complementary model which is capable of well simulating the temperature impact on these devices performance.
  4. Muhammad FF, Karim Sangawi AW, Hashim S, Ghoshal SK, Abdullah IK, Hameed SS
    PLoS One, 2019;14(5):e0216201.
    PMID: 31048867 DOI: 10.1371/journal.pone.0216201
    The behavior of solar cells and modules under various operational conditions can be determined effectively when their intrinsic parameters are accurately estimated and used to simulate the current-voltage (I-V) characteristics. This work proposed a new computational approach based on approximation and correction technique (ACT) for simple and efficient extraction of solar cells and modules parameters from the single-diode model. In this technique, an approximated value of series resistance (Rs) was first derived and used to determine the initial value of parallel resistance (Rp). Later, the final corrected values of Rs and Rp were obtained by resubstituting their approximated values in a five-loop iteration using the manipulated equations. For rapid evaluation and validation of the proposed technique, a software application was also created using MATLAB program. The correctness and robustness of the proposed technique was validated on five types of solar cells and modules operated at varied temperatures and irradiances. The lowest RMSE value was achieved for RTC France (7.78937E-4) and PVM 752 GaAs (2.10497E-4) solar cell. The legitimacy of ACT extracted parameters was established using a simple yet competitive implementation approach wherein the performance of the developed technique was compared with several state-of-the-art methods recently reported in the literature.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links