Displaying publications 1 - 20 of 36 in total

Abstract:
Sort:
  1. Al-qattan MN, Mordi MN
    J Mol Model, 2010 May;16(5):1047-58.
    PMID: 19911202 DOI: 10.1007/s00894-009-0618-7
    A molecular docking tool of AutoDock3.05 was evaluated for its ability to reproduce experimentally determined affinities of various sialic acid analogues toward hemagglutinin of influenza A virus. With the exception of those with a C6-modified glycerol side chain, the experimental binding affinities of most sialic acid analogues (C2, C4 and C5-substituted) determined by viral hemadsorption inhibition assay, hemagglutination inhibition assay and nuclear magnetic resonance correlated well with the computationally estimated free energy of binding. Sialic acid analogues with modified glycerol side chains showed only poor correlation between the experimentally determined hemagglutinin inhibitor affinities and AutoDock3.05 scores, suggesting high mobility of the glutamic acid side chain at the glycerol binding pocket, which is difficult to simulate using a flexi-rigid molecular docking approach. In conclusion, except for some glycerol-substituted sialic acid analogues, the results showed the effectiveness of AutoDock3.05 searching and scoring functions in estimating affinities of sialic acid analogues toward influenza A hemagglutinin, making it a reliable tool for screening a database of virtually designed sialic acid analogues for hemagglutinin inhibitors.
  2. Al-qattan MN, Mordi MN
    J Mol Model, 2010 May;16(5):975-91.
    PMID: 19856192 DOI: 10.1007/s00894-009-0606-y
    In this study fragment-based drug design is combined with molecular docking simulation technique, to design databases of virtual sialic acid (SA) analogues with new substitutions at C2, C5 and C6 positions of SA scaffold. Using spaces occupied by C2, C5 and C6 natural moieties of SA when bound to hemagglutinin (HA) crystallographic structure, new fragments that are commercially available were docked independently in all the pockets. The oriented fragments were then connected to the SA scaffold with or without incorporation of linker molecules. The completed analogues were docked to the whole SA binding site to estimate their binding conformations and affinities, generating three databases of HA-bound SA analogues. Selected new analogues showed higher estimated affinities than the natural SA when tested against H3N2, H5N1 and H1N1 subtypes of influenza A. An improvement in the binding energies indicates that fragment-based drug design when combined with molecular docking simulation is capable to produce virtual analogues that can become lead compound candidates for anti-flu drug discovery program.
  3. Navaratnam V, Mordi MN, Mansor SM
    J Chromatogr B Biomed Sci Appl, 1997 Apr 25;692(1):157-62.
    PMID: 9187395
    A selective reproducible high-performance liquid chromatographic assay for the simultaneous quantitative determination of the antimalarial compound artesunic acid (ARS), dihydroartemisinin (DQHS) and artemisinin (QHS), as internal standard, is described. After extraction from plasma, ARS and DQHS were analysed using an Econosil C8 column and a mobile phase of acetonitrile-0.05 M acetic acid (42:58, v/v) adjusted to pH 5.0 and electrochemical detection in the reductive mode. The mean recovery of ARS and DQHS over a concentration range of 50-200 ng/ml was 75.5% and 93.5%, respectively. The within-day coefficients of variation were 4.2-7.4% for ARS and 2.6-4.9% for DQHS. The day-to-day coefficients of variation were 1.6-9.6% and 0.5-8.3%, respectively. The minimum detectable concentration for ARS and DQHS in plasma was 4.0 ng/ml for both compounds. The method was found to be suitable for use in clinical pharmacological studies.
  4. Mahmod Al-Qattan MN, Mordi MN
    Curr Pharm Des, 2019;25(7):817-831.
    PMID: 30834826 DOI: 10.2174/1381612825666190304122624
    Modulating cellular processes through extracellular chemical stimuli is medicinally an attractive approach to control disease conditions. GPCRs are the most important group of transmembranal receptors that produce different patterns of activations using intracellular mediators (such as G-proteins and Beta-arrestins). Adenosine receptors (ARs) belong to GPCR class and are divided into A1AR, A2AAR, A2BAR and A3AR. ARs control different physiological activities thus considered valuable target to control neural, heart, inflammatory and other metabolic disorders. Targeting ARs using small molecules essentially works by binding orthosteric and/or allosteric sites of the receptors. Although targeting orthosteric site is considered typical to modulate receptor activity, allosteric sites provide better subtype selectivity, saturable modulation of activity and variable activation patterns. Each receptor exists in dynamical equilibrium between conformational ensembles. The equilibrium is affected by receptor interaction with other molecules. Changing the population of conformational ensembles of the receptor is the method by which orthosteric, allosteric and other cellular components control receptor signaling. Herein, the interactions of ARs with orthosteric, allosteric ligands as well as intracellular mediators are described. A quinary interaction model for the receptor is proposed and energy wells for major conformational ensembles are retrieved.
  5. Al-Qattan MNM, Mordi MN
    J Mol Model, 2023 Aug 16;29(9):281.
    PMID: 37584781 DOI: 10.1007/s00894-023-05650-0
    CONTEXT: Modulation of disease progression is frequently started by identifying biochemical pathway catalyzed by biomolecule that is prone to inhibition by small molecular weight ligands. Such ligands (leads) can be obtained from natural resources or synthetic libraries. However, de novo design based on fragments assembly and optimization is showing increasing success. Plasmodium falciparum parasite depends on glutathione-S-transferase (PfGST) in buffering oxidative heme as an approach to resist some antimalarials. Therefore, PfGST is considered an attractive target for drug development. In this research, fragment-based approaches were used to design molecules that can fit to glutathione (GSH) binding site (G-site) of PfGST.

    METHODS: The involved approaches build molecules from fragments that are either isosteric to GSH sub-moieties (ligand-based) or successfully docked to GSH binding sub-pockets (structure-based). Compared to reference GST inhibitor of S-hexyl GSH, ligands with improved rigidity, synthetic accessibility, and affinity to receptor were successfully designed. The method involves joining fragments to create ligands. The ligands were then explored using molecular docking, Cartesian coordinate's optimization, and simplified free energy determination as well as MD simulation and MMPBSA calculations. Several tools were used which include OPENEYE toolkit, Open Babel, Autodock Vina, Gromacs, and SwissParam server, and molecular mechanics force field of MMFF94 for optimization and CHARMM27 for MD simulation. In addition, in-house scripts written in Matlab were used to control fragments connection and automation of the tools.

  6. Ayipo YO, Chong CF, Mordi MN
    RSC Med Chem, 2023 Jun 22;14(6):1012-1048.
    PMID: 37360393 DOI: 10.1039/d3md00036b
    Antibiotic resistance (AR) remains one of the major threats to the global healthcare system, which is associated with alarming morbidity and mortality rates. The defence mechanisms of Enterobacteriaceae to antibiotics occur through several pathways including the production of metallo-β-lactamases (MBLs). The carbapenemases, notably, New Delhi MBL (NDM), imipenemase (IMP), and Verona integron-encoded MBL (VIM), represent the critical MBLs implicated in AR pathogenesis and are responsible for the worst AR-related clinical conditions, but there are no approved inhibitors to date, which needs to be urgently addressed. Presently, the available antibiotics including the most active β-lactam-types are subjected to deactivation and degradation by the notorious superbug-produced enzymes. Progressively, scientists have devoted their efforts to curbing this global menace, and consequently a systematic overview on this topic can aid the timely development of effective therapeutics. In this review, diagnostic strategies for MBL strains and biochemical analyses of potent small-molecule inhibitors from experimental reports (2020-date) are overviewed. Notably, N1 and N2 from natural sources, S3-S7, S9 and S10 and S13-S16 from synthetic routes displayed the most potent broad-spectrum inhibition with ideal safety profiles. Their mechanisms of action include metal sequestration from and multi-dimensional binding to the MBL active pockets. Presently, some β-lactamase (BL)/MBL inhibitors have reached the clinical trial stage. This synopsis represents a model for future translational studies towards the discovery of effective therapeutics to overcome the challenges of AR.
  7. Goh TB, Koh RY, Mordi MN, Mansor SM
    Asian Pac J Cancer Prev, 2014;15(14):5659-65.
    PMID: 25081682
    BACKGROUND: To investigate the antioxidant value and anticancer functions of mitragynine (MTG) and its silane-reduced analogues (SRM) in vitro.

    MATERIALS AND METHODS: MTG and SRM was analyzed for their reducing power ability, ABTS radical inhibition and 1,1-diphenyl-2-picryl hydrazylfree radicals scavenging activities. Furthermore, the antiproliferation efficacy was evaluated using MTT assay on K 562 and HCT116 cancer cell lines versus NIH/3T3 and CCD18-Co normal cell lines respectively.

    RESULTS: SRM and MTG demonstrate moderate antioxidant value with ABTS assay (Trolox equivalent antioxidant capacity (TEAC): 2.25±0.02 mmol trolox / mmol and 1.96±0.04 mmol trolox / mmol respectively) and DPPH (IC50=3.75±0.04 mg/mL and IC50=2.28±0.02 mg/mL respectively). Both MTG and SRM demonstrate equal potency (IC50=25.20±1.53 and IC50= 22.19±1.06 respectively) towards K 562 cell lines, comparable to control, betulinic acid (BA) (IC5024.40±1.26). Both compounds showed concentration-dependent cytototoxicity effects and exert profound antiproliferative efficacy at concentration > 100 μM towards HCT 116 and K 562 cancer cell lines, comparable to those of BA and 5-FU (5-Fluorouracil). Furthermore, both MTG and SRM exhibit high selectivity towards HCT 116 cell lines with selective indexes of 3.14 and 2.93 respectively compared to 5-FU (SI=0.60).

    CONCLUSIONS: These findings revealed that the medicinal and nutitional values of mitragynine obtained from ketum leaves that growth in tropical forest of Southeast Asia and its analogues does not limited to analgesic properties but could be promising antioxidant and anticancer or chemopreventive compounds.

  8. Ayipo YO, Mordi MN, Mustapha M, Damodaran T
    Eur J Pharmacol, 2021 Feb 15;893:173837.
    PMID: 33359647 DOI: 10.1016/j.ejphar.2020.173837
    Neuropsychiatric disorders are diseases of the central nervous system (CNS) which are characterised by complex pathomechanisms that including homeostatic failure, malfunction, atrophy, pathology remodelling and reactivity anomaly of the neuronal system where treatment options remain challenging. β-Carboline (βC) alkaloids are scaffolds of structurally diverse tricyclic pyrido[3,4-b]indole alkaloid with vast occurrence in nature. Their unique structural features which favour interactions with enzymes and protein receptor targets account for their potent neuropharmacological properties. However, our current understanding of their biological mechanisms for these beneficial effects, especially for neuropsychiatric disorders is sparse. Therefore, we present a comprehensive review of the scientific progress in the last two decades on the prospective pharmacology and physiology of the βC alkaloids in the treatment of some neuropsychiatric conditions such as depression, anxiety, Alzheimer's disease, Parkinson's disease, brain tumour, essential tremor, epilepsy and seizure, licking behaviour, dystonia, agnosia, spasm, positive ingestive response as demonstrated in non-clinical models. The current evidence supports that βC alkaloids offer potential therapeutic agents against most of these disorders and amenable for further drug design.
  9. Sahgal G, Ramanathan S, Sasidharan S, Mordi MN, Ismail S, Mansor SM
    Trop Biomed, 2011 Apr;28(1):132-7.
    PMID: 21602779 MyJurnal
    Swietenia mahogani crude methanolic (SMCM) seed extract was investigated for the antifungal activity against Candida albicans which has not been evaluated previously. The antifungal activity was evaluated against C. albicans via disk diffusion, minimum inhibition concentration (MIC), scanning electron microscope (SEM), transmission electron microscope (TEM) and time killing profile. The MIC value of SMCM seed extract is 12.5 mg/ml. The SEM and TEM findings showed there is morphological changes and cytological destruction of C. albicans at the MIC value. Animal model was used to evaluate the in vivo antifungal activity of SMCM seed extract. The colony forming unit (CFU) were calculated per gram of kidney sample and per ml of blood sample respectively for control, curative and ketaconazole treated groups. There was significant reduction for the CFU/ml of blood and CFU/g of kidney. This indicated that the extract was observed to be effective against C. albicans in vitro and in vivo conditions.
  10. Sahgal G, Ramanathan S, Sasidharan S, Mordi MN, Ismail S, Mansor SM
    Trop Biomed, 2009 Dec;26(3):274-9.
    PMID: 20237441 MyJurnal
    The present study was designed to evaluate the antibacterial activities of Swietenia mahagoni crude methanolic (SMCM) seed extract. The antimicrobial activity of the oily extract against Gram-positive, Gram-negative, yeast and fungus strains was evaluated based on the inhibition zone using disc diffusion assay, minimal inhibition concentration (MIC) and minimal bactericidal concentration (MBC) values. The crude extract was subjected to various phytochemicals analysis. The demonstrated qualitative phytochemical tests exhibited the presences of common phytocompounds including alkaloids, terpenoids, antraquinones, cardiac glycosides, saponins, and volatile oils as major active constituents. The SMCM seed extract had inhibitory effects on the growth of Candida albicans, Staphylococcus aureus, Pseudomonas aeroginosa, Streptococcus faecalis and Proteus mirabillase and illustrated MIC and MBC values ranging from 25 mg/ml to 50 mg/ml.
  11. Mordi MN, Mansor SM, Navaratnam V, Wernsdorfer WH
    Br J Clin Pharmacol, 1997 Apr;43(4):363-5.
    PMID: 9146847
    AIMS: To determine the pharmacokinetics of artemether (ARM) and its principal active metabolite, dihydroartemisinin (DHA) in healthy volunteers.

    METHODS: Six healthy male Malaysian subjects were given a single oral dose of 200 mg artemether. Blood samples were collected to 72 h. Plasma concentrations of the two compounds were measured simultaneously by reversed-phase h.p.l.c. with electro-chemical detection in the reductive mode.

    RESULTS: Mean (+/- s.d.) maximum concentrations of ARM, 310 +/- 153 micrograms l-1, were reached 1.88 +/- 0.21 h after drug intake. The mean elimination half-life was 2.00 +/- 0.59 h, and the mean AUC 671 +/- 271 micrograms l-1 h. The mean Cmax of DHA, 273 +/- 64 micrograms l-1 was observed at 1.92 +/- 0.13 h. The mean AUC of DHA was 753 +/- 233 micrograms h l-1'. ARM and DHA were stable at < or = -20 degrees C for at least 4 months in plasma samples.

    CONCLUSIONS: The relatively short half-life of ARM may be one of the factors responsible for the poor radical cure rate of falciparum malaria with regimens employing daily dosing. In view of the rapid loss of DHA in plasma samples held at room temperature (26 degrees C) it is recommended to store them at a temperature of < or = -20 degrees C as early as possible after sample collection.

  12. Al-Qattan MN, Mordi MN, Mansor SM
    Comput Biol Chem, 2016 10;64:237-249.
    PMID: 27475235 DOI: 10.1016/j.compbiolchem.2016.07.007
    BACKGROUND: Glutathione-s-transferases (GSTs) are enzymes that principally catalyze the conjugation of electrophilic compounds to the endogenous nucleophilic glutathione substrate, besides, they have other non-catalytic functions. The Plasmodium falciparum genome encodes a single isoform of GST (PfGST) which is involved in buffering the toxic heme, thus considered a potential anti-malarial target. In mammals several classes of GSTs are available, each of various isoforms. The human (human GST Pi-1 or hGSTP1) and mouse (murine GST Mu-1 or mGSTM1) GST isoforms control cellular apoptosis by interaction with signaling proteins, thus considered as potential anti-cancer targets. In the course of GSTs inhibitors development, the models of ligands interactions with GSTs are used to guide rational molecular modification. In the absence of X-ray crystallographic data, enzyme kinetics and molecular docking experiments can aid in addressing ligands binding modes to the enzymes.

    METHODS: Kinetic studies were used to investigate the interactions between the three GSTs and each of glutathione, 1-chloro-2,4-dinitrobenzene, cibacron blue, ethacrynic acid, S-hexyl glutathione, hemin and protoporphyrin IX. Since hemin displacement is intended for PfGST inhibitors, the interactions between hemin and other ligands at PfGST binding sites were studied kinetically. Computationally determined binding modes and energies were interlinked with the kinetic results to resolve enzymes-ligands interaction models at atomic level.

    RESULTS: The results showed that hemin and cibacron blue have different binding modes in the three GSTs. Hemin has two binding sites (A and B) with two binding modes at site-A depending on presence of GSH. None of the ligands were able to compete hemin binding to PfGST except ethacrynic acid. Besides bind differently in GSTs, the isolated anthraquinone moiety of cibacron blue is not maintaining sufficient interactions with GSTs to be used as a lead. Similarly, the ethacrynic acid uses water bridges to mediate interactions with GSTs and at least the conjugated form of EA is the true hemin inhibitor, thus EA may not be a suitable lead.

    CONCLUSIONS: Glutathione analogues with bulky substitution at thiol of cysteine moiety or at γ-amino group of γ-glutamine moiety may be the most suitable to provide GST inhibitors with hemin competition.

  13. Navaratnam V, Mansor SM, Mordi MN, Akbar A, Abdullah MN
    Eur J Clin Pharmacol, 1998 Jul;54(5):411-4.
    PMID: 9754985
    OBJECTIVE: A single cross-over, comparative pharmacokinetic study of oral and rectal formulations of 200 mg artesunic acid in 12 healthy Malaysian volunteers is reported.

    METHODS: Plasma concentrations of artesunic acid and dihydroartemisinin were determined simultaneously by HPLC with electrochemical detection. The test drug was well tolerated and no undesirable adverse effects were observed.

    RESULTS: Comparison of pharmacokinetic parameters of artesunic acid after oral and rectal administration showed statistically significant differences in t(max) and AUC, with no changes for Cmax and t1/2. As for dihydroartemisinin, differences were observed for t(max) and Cmax but not for AUC.

    CONCLUSION: There appear to be pharmacokinetic differences between oral and rectal modes of administration. The significance of these findings should be explored in malaria patients before appropriate therapeutic regimens are devised.

  14. Ayipo YO, Alananzeh WA, Yahayaa SN, Mordi MN
    PMID: 35611784 DOI: 10.2174/1386207325666220524094913
    BACKGROUND: Serotonin/5-HT antagonist and reuptake inhibitors (SARIs) ameliorate depression by increasing the terminal 5-HT through the activation of somatodendritic 5-HT1A autoreceptors. In addition to their therapeutic application as standalone antidepressants, they are co-administered with selective serotonin reuptake inhibitors (SSRI) to improve unpleasant side effects associated with SSRI-treated depression. However, only a few of the atypical antidepressants are available and not without some serious aftereffects. This study aims at the identification of novel promising SARIs using computational chemistry and high throughput screening.

    METHODS: Pharmacophore features were modelled using LigandScout 4.3 and validated through the area under curve (AUC), enrichment factor (EF) and Guner-Henry (GH) scores. Molecular docking was employed for virtual screening against modelled human 5HT1A homology receptor, molecular dynamics simulations and ADMET predictions.

    RESULTS: The adopted pharmacophore possesses AUC, EF and GH scores of 0.7, 30.9 and 0.6 respectively, thus validated and used for molecular database screening. The modelled 5-HT1A homology receptor, validated using RCSB structure validation protocols, was employed for molecular docking and dynamics simulations. From the IBScreen database, the ligands, STOCK6S-36853, STOCK7S-36094, STOCK3S-94557, STOCK7S-28769 and STOCK5S-36248 interacted more strongly against the 5-HT1A receptor with docking scores of -8.735, -8.677, -8.140, -7.911 and -7.710 kcal/mol, and binding free energy of -29.72, -38.87, -29.85, -7.65 and -34.71 kcal/mol respectively, compared to fluoxetine and trazodone (positive controls) while albendazole and metformin (negative controls) scored least. They demonstrated good stability, satisfy the BDDCS RO5 and thus, are identified as potent SARIs.

    CONCLUSION: The study represents a cost-effective, faster and environmentally friendly approach to the discovery of promising SARI antidepressants for further translational study.

  15. Ayipo YO, Chong CF, Abdulameed HT, Mordi MN
    Fitoterapia, 2024 Mar 27;175:105922.
    PMID: 38552806 DOI: 10.1016/j.fitote.2024.105922
    Type 2 diabetes (T2D) remains a major chronic metabolic disorder affecting hundreds of millions of the global population, mostly among adults, engendering high rates of morbidity and mortality. It is characterized by complex aetiologies including insulin deficiency and resistance, and hyperglycemia, and these significantly constitute therapeutic challenges. Several pathways have been implicated in its pathophysiology and treatment including the epigenetic regulatory mechanism, notably, deoxyribonucleic acid (DNA) methylation/demethylation, histone modification, non-coding ribonucleic acid (ncRNA) modulation and other relevant pathways. Many studies have recently documented the implications of phytochemicals on the aforementioned biomarkers in the pathogenesis and treatment of T2D. In this review, the cellular and molecular mechanisms of the epigenetic effects of some bioactive alkaloidal and phenolic phytochemicals as potential therapeutic alternatives for T2D have been overviewed from the recent literature (2019-2024). From the survey, the natural product-based compounds, C1-C32 were curated as potent epigenetic modulators for T2D. Their cellular and molecular mechanisms of anti-T2D activities with relevant epigenetic biomarkers were revealed. Although, more comprehensive experimental analyses are observably required for validating their activity and toxicological indices. Thus, perspectives and challenges were enumerated for such demanding future translational studies. The review reveals advances in scientific efforts towards reversing the global trend of T2D through epigenetic phytotherapeutics.
  16. Annegowda HV, Anwar LN, Mordi MN, Ramanathan S, Mansor SM
    Pharmacognosy Res, 2010 Nov;2(6):368-73.
    PMID: 21713141 DOI: 10.4103/0974-8490.75457
    This study was designed to evaluate the phenolic content and antioxidant activity of ethanolic extracts from T. catappa leaves obtained by different intervals of sonication.
  17. Mustaffa F, Indurkar J, Ismail S, Mordi MN, Ramanathan S, Mansor SM
    Pharmacognosy Res, 2010 Mar;2(2):76-81.
    PMID: 21808545 DOI: 10.4103/0974-8490.62952
    Cinnomomum iners standardized leaves methanolic extract (CSLE) was subjected to analgesic, toxicity and phytochemical studies. The analgesic activity of CSLE was evaluated using formalin, hot plate and tail flick tests at doses of 100, 200 and 500 mg/kg. CSLE showed significant activity (P < 0.05) in the formalin model (late phase) on the rats at doses of 200 and 500 mg/kg. However, CSLE did not show activity in the hot plate and tail flick tests. The results obtained suggest that CSLE acts peripherally to relieve pain. For the toxicity study, CSLE was orally administered to the Swiss albino mice according to the Organization for Economic Co-Operation and Development (OECD) guideline 423. There was no lethality or toxic symptoms observed for all the tested doses throughout the 14-day period. Phytochemical screening of CSLE showed the presence of cardiac glycoside, flavonoid, polyphenol, saponin, sugar, tannin and terpenoid.
  18. Karunakaran T, Ganasan J, Rusmadi NN, Santhanam R, Mordi MN
    Nat Prod Res, 2024 Jul 09.
    PMID: 38982630 DOI: 10.1080/14786419.2024.2375760
    Mitragynine, a primary alkaloid found in kratom leaves has been reported to have a broad range of pharmacological and toxicological properties while its congener, paynatheine has comparatively less information available on these aspects. Mitragynine and its congener, paynantheine, were isolated from the ethanol kratom leaves extract using gravity column chromatography techniques. Our study evaluated the cytotoxicity potential of mitragynine and paynantheine on normal human liver cell line, HL-7702, and human hepatoma cell line, HepG2. Mitragynine exhibited a moderate inhibitory effect on the HepG2 cell line with IC50 value of 42.11 ± 1.31 μM in comparison with vinblastine (IC50: 15.45 ± 0.72 μM) while it showed non-cytotoxic properties towards the HL-7702 cell line with concentrations ranging below 200 μM. In contrast, paynantheine exhibited weak cytotoxic properties towards HepG2 and HL-7702 cell lines. Further comprehensive evaluations of both compounds are needed to establish more details on the cytotoxicity potential of kratom alkaloids.
  19. Alananzeh WA, Al-Qattan MN, Ayipo YO, Mordi MN
    Mol Divers, 2024 Jun;28(3):1273-1289.
    PMID: 37133710 DOI: 10.1007/s11030-023-10655-1
    Manipulating intracellular signals by interaction with transmembranal G-protein-coupled receptors (GPCRs) is the way of action of more than 30% of available medicines. Designing molecules against GPCRs is most challenging due to their flexible binding orthosteric and allosteric pockets, a property that lead to different mode and extent of activation of intracellular mediators. Here, in the current study we aimed to design N-substituted tetrahydro-beta-carbolines (THβC's) targeting Mu Opioid Receptors (MORs). We performed ligand docking study for reference and designed compounds against active and inactive states of MOR, as well as the active state bound to intracellular mediator of Gi. The reference compounds include 40 known agonists and antagonists, while the designed compounds include 25,227 N-substituted THβC analogues. Out of the designed compounds, 15 compounds were comparatively having better extra precision (XP) Gscore and were analyzed for absorption, distribution, metabolism, and excretion-toxicity (ADMET) properties, drug-likness, and molecular dynamic (MD) simulation. The results showed that N-substituted tetrahydro-beta-carbolines with and without C6-methoxy group substitutions (THBC/6MTHBC) analogues of A1/B1 and A9/B9 have relatively acceptable affinity and within pocket-stability toward MOR compared to the reference compounds of morphine (agonist) and naloxone (antagonist). Moreover, the designed analogues interact with key residue within the binding pocket of Asp 147 that is reported to be involved in receptor activation. In conclusion, the designed THBC analogues represent a good starting point for designing opioid receptor ligands other than morphinan scaffold, that have good synthetic accessibility which promotes feasible structural manipulation to tailor pharmacological effects with minimal side effects.
  20. Azizi J, Ismail S, Mordi MN, Ramanathan S, Said MI, Mansor SM
    Molecules, 2010 Jan 20;15(1):432-41.
    PMID: 20110902 DOI: 10.3390/molecules15010432
    In the present study, we investigate the effects of three different Mitragyna speciosa extracts, namely methanolic, aqueous and total alkaloid extracts, on glutathione transferase-specific activity in male Sprague Dawley rat liver cytosol in vitro and in vivo. In the in vitro study, the effect of Mitragyna speciosa extracts (0.01 to 750 microg/mL) against the specific activity of glutathione transferases was examined in rat liver cytosolic fraction from untreated rats. Our data show concentration dependent inhibition of cytosolic GSTs when Mitragyna speciosa extract was added into the reaction mixture. At the highest concentration used, the methanolic extract showed the highest GSTs specific activity inhibition (61%), followed by aqueous (50%) and total alkaloid extract (43%), respectively. In in vivo study, three different dosages; 50, 100 and 200 mg/kg for methanolic and aqueous extracts and 5, 10 and 20 mg/kg for total alkaloid extract were given orally for 14 days. An increase in GST specific activity was generally observed. However, only Mitragyna speciosa aqueous extract with a dosage of 100 mg/kg showed significant results: 129% compared to control.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links