Displaying all 13 publications

Abstract:
Sort:
  1. Fakhru'l-Razi A, Molla AH
    J Hazard Mater, 2007 Aug 17;147(1-2):350-6.
    PMID: 17321676
    A promising biological, sustainable, non-hazardous, safe and environmental friendly management and disposal technique of domestic wastewater sludge is global expectation. Fungal entrapped biosolids as a result of prior fungal treated raw wastewater sludge was recycled to evaluate its performance as inoculum for bioseparation/bioconversion of supplemented sludge in view of continuous as well as scale up wastewater sludge treatment. Encouraging results were achieved in bioseparation of suspended solids and in dewaterability/filterability of treated domestic wastewater sludge. Fungal entrapped biosolids offered 98% removal of total suspended solids (TSS) in supplemented sludge treatment at 6-day without nutrient (wheat flour, WF) supply. Consequently, 99% removal of turbidity and 87% removal of chemical oxygen demand (COD) were achieved in supernatant of treated sludge. The lowest value (1.75 x 10(12)m/kg) of specific resistance to filtration (SRF) was observed at 6-day after treatment, which was equivalent to the 70% decrease of SRF. The all results except SRF were not influenced further in treatments accompanied with WF supplementation. The present treatments offered significant (P
  2. Molla AH, Fakhru'l-Razi A
    Environ Sci Pollut Res Int, 2012 Jun;19(5):1612-9.
    PMID: 22134862 DOI: 10.1007/s11356-011-0676-0
    INTRODUCTION: Environmental safe and friendly management and disposal of wastewater sludge is a problem of every treatment plant throughout the world. Bioseparation and dewaterability of raw domestic wastewater sludge were evaluated for proper management and disposal by mycoremediation, i.e., using prior grown 2% (v/v) spore suspension of filamentous fungal (Mucor hiemalis Wehmer) broth inoculation, which were grown in 2% (w/v) solution of malt extract and wheat flour for 48-60 h in orbital shaker.

    DISCUSSION: Within 2-3 days of treatment application, encouraging results were achieved in total dry solids (TDS), total suspended solid (TSS), turbidity, chemical oxygen demand (COD), specific resistance to filtration (SRF), and pH due to fungal treatment in recognition of bioseparation and dewaterability of wastewater sludge compared to control. The significant reduction of TDS was remarked at fungal biomass (FB) in wheat flour (WF) treatment. The removal of TSS, turbidity, COD, and SRF were observed 96.0%, 99.4%, 92.6%, and 97.6%, respectively, in supernatant at 5 days by FB in WF. The SRF measuring the dewaterability was decreased with maximum (0.26 × 10(-12) mg/kg) equivalent to 95.5% at 2 days in FB in WF also. FB in WF broth is a potential, environmental friendly, comparatively low-cost biological technique which might play the significant role for bioremediation and bioseparation of domestic wastewater sludge. The present technique may bring a dynamic change in treatment of wastewater in future.

  3. Alam MZ, Fakhru'l-Razi A, Molla AH
    PMID: 15332668
    A laboratory-scale study was undertaken to evaluate the liquid state bioconversion (LSB) in terms of biodegradation of microbially treated domestic wastewater sludge (biosolids) as well as its kinetics. The potential fungal strains and process factors developed from previous studies were used throughout the study. The results presented in this study showed that an effective biodegradation occurred with the biosolids (sludge cake) accumulated. The maximum biosolids (sludge cake) accumulated (93.8 g/kg of liquid sludge) enriched with the biomass protein (30.2 g/kg of dry biosolids), was achieved which improved the effluent quality by enhancing the removal of chemical oxygen demand (COD), reducing sugar (RS), soluble protein (SP), total dissolved solids (TDS), and total suspended solids (TSS). The higher reduction of specific resistance to filtration (SRF) was observed during bioconversion process. The kinetics results showed that the experimental data were better fitted for the biodegradation efficiency, and biosolids accumulation and biodegradation rate.
  4. Alam MZ, Fakhru'l-Razi A, Molla AH
    J Environ Sci (China), 2004;16(1):132-7.
    PMID: 14971468
    This study was undertaken to screen the filamentous fungi isolated from its relevant habitats(wastewater, sewage sludge and sludge cake) for the bioconversion of domestic wastewater sludge. A total of 35 fungal strains were tested against wastewater sludge (total suspended solids, TSS 1%-5% w/w) to evaluate its potentiality for enhancing the biodegradability and dewaterability using liquid state bioconversion(LSB) process. The strains were divided into five groups i.e. Penicillium, Aspergillus, Trichoderma, Basidiomycete and Miscellaneous, respectively. The strains WWZP1003, SCahmA103, SCahmT105 and PC-9 among their respective groups of Penicillium, Aspergillus, Trichoderma and Basidiomycete played potential roles in terms of separation (formation of pellets/flocs/filaments), biodegradation(removal of COD) and filtration (filterability) of treated domestic wastewater sludge. The Miscellaneous group was not considered due to its unsatisfactory results as compared to the other groups. The pH value was also influenced by the microbial treatment during fermentation process. The filterability of treated sludge was improved by fungal treatment, and lowest filtration time was recorded for the strain WWZP1003 and SCahmA103 of Penicillium and Aspergillus groups respectively compared with other strains.
  5. Alam MZ, Fakhru'l-Razi A, Molla AH
    Water Res, 2003 Sep;37(15):3569-78.
    PMID: 12867323
    The biosolids accumulation and biodegradation of domestic wastewater treatment plant (DWTP) sludge by filamentous fungi have been investigated in a batch fermenter. The filamentous fungi Aspergillus niger and Penicillium corylophilum isolated from wastewater and DWTP sludge was used to evaluate the treatment performance. The optimized mixed inoculum (A. niger and P. corylophilum) and developed process conditions (co-substrate and its concentration, temperature, initial pH, inoculum size, and aeration and agitation rate) were incorporated to accelerate the DWTP sludge treatment process. The results showed that microbial treatment of higher strength of DWTP sludge (4% w/w of TSS) was highly influenced by the liquid state bioconversion (LSB) process. In developed bioconversion processes, 93.8 g/kg of biosolids was enriched with fungal biomass protein of 30 g/kg. Enrichment of nutrients such as nitrogen (N), phosphorous (P), potassium (K) in biosolids was recorded in 6.2% (w/w), 3.1% (w/w) and 0.15% (w/w) from its initial values of 4.8% (w/w), 2.0% (w/w) and 0.08% (w/w) respectively after 10 days of fungal treatment. The biodegradation results revealed that 98.8% of TSS, 98.2% of TDS, 97.3% of turbidity, 80.2% of soluble protein, 98.8% of reducing sugar and 92.7% of COD in treated DWTP sludge supernatant were removed after 8 days of microbial treatment. The specific resistance to filtration (SRF) in treated sludge (1.4x10(12) m/kg) was decreased tremendously by the microbial treatment of DWTP sludge after 6 days of fermentation compared to untreated sample (85x10(12) m/kg).
  6. Rahman RA, Molla AH, Fakhru'l-Razi A
    Environ Sci Pollut Res Int, 2014 Jan;21(2):1178-87.
    PMID: 23881591 DOI: 10.1007/s11356-013-1974-5
    Sustainable, environmental friendly, and safe disposal of sewage treatment plant (STP) sludge is a global expectation. Bioremediation performance was examined at different hydraulic retention times (HRT) in 3-10 days and organic loading rates (OLR) at 0.66-7.81 g chemical oxygen demand (COD) per liter per day, with mixed filamentous fungal (Aspergillus niger and Penicillium corylophilum) inoculation by liquid-state bioconversion (LSB) technique as a continuous process in large-scale bioreactor. Encouraging results were monitored in treated sludge by LSB continuous process. The highest removal of total suspended solid (TSS), turbidity, and COD were achieved at 98, 99, and 93%, respectively, at 10 days HRT compared to control. The minimum volatile suspended solid/suspended solid implies the quality of water, which was recorded 0.59 at 10 days and 0.72 at 3 days of HRT. In treated supernatant with 88% protein removal at 10 days of HRT indicates a higher magnitude of purification of treated sludge. The specific resistance to filtration (SRF) quantifies the performance of dewaterability; it was recorded minimum 0.049 × 10(12) m kg(-1) at 10 days of HRT, which was equivalent to 97% decrease of SRF. The lower OLR and higher HRT directly influenced the bioremediation and dewaterability of STP sludge in LSB process. The obtained findings imply encouraging message in continuing treatment of STP sludge, i.e., bioremediation of wastewater for environmental friendly disposal in near future.
  7. Rahman RA, Molla AH, Barghash HF, Fakhru'l-Razi A
    Environ Technol, 2016;37(1):1-15.
    PMID: 26111620 DOI: 10.1080/09593330.2015.1058860
    Liquid-state bioconversion (LSB) technique has great potential for application in bioremediation of sewage sludge. The purpose of this study is to determine the optimum level of LSB process of sewage sludge treatment by mixed fungal (Aspergillus niger and Penicillium corylophilum) inoculation in a pilot-scale bioreactor. The optimization of process factors was investigated using response surface methodology based on Box-Behnken design considering hydraulic retention time (HRT) and substrate influent concentration (S0) on nine responses for optimizing and fitted to the regression model. The optimum region was successfully depicted by optimized conditions, which was identified as the best fit for convenient multiple responses. The results from process verification were in close agreement with those obtained through predictions. Considering five runs of different conditions of HRT (low, medium and high 3.62, 6.13 and 8.27 days, respectively) with the range of S0 value (the highest 12.56 and the lowest 7.85 g L(-1)), it was monitored as the lower HRT was considered as the best option because it required minimum days of treatment than the others with influent concentration around 10 g L(-1). Therefore, optimum process factors of 3.62 days for HRT and 10.12 g L(-1) for S0 were identified as the best fit for LSB process and its performance was deviated by less than 5% in most of the cases compared to the predicted values. The recorded optimized results address a dynamic development in commercial-scale biological treatment of wastewater for safe and environment-friendly disposal in near future.
  8. Fakhru'l-Razi A, Alam MZ, Idris A, Abd-Aziz S, Molla AH
    PMID: 12369644
    Bioconversion of higher strength of domestic wastewater biosolids (sludge) (4% w/w of TSS) by mixed fungal culture of Aspergillus niger and Penicillium corylophilum was studied in a laboratory. The effect of potential mixed fungi on domestic wastewater sludge accelerated the liquid state bioconversion (LSB) process. The highest production of dry sludge cake (biosolids) was enriched with fungal biomass to about 85.66 g/kg containing 25.23 g/kg of protein after 8 days of treatment. The results presented in this study revealed that the reduction of chemical oxygen demand (COD), total suspended solid (TSS), and specific resistance to filtration (SRF) of treated sludge were highly influenced by the fungal culture as compared to control (uninnoculated). The maximum removal rates in treated sludge (biosolids) supernatant recorded were 92% of COD and 98.8% of TSS. Lower SRF (1.08 x 10(12) m/kg) was perceived in microbially treated sludge after 6 days of fermentation. The observed parameters were highly influenced after 8 days of treatment. The influence of pH was also studied and presented in the paper.
  9. Fakhrul-Razi A, Alam MZ, Idris A, Abd-Aziz S, Molla AH
    PMID: 11929070
    A study was carried out to isolate and identify filamentous fungi for the treatment of domestic wastewater sludge by enhancing biodegradability, settleability and dewaterability of treated sludge using liquid state bioconversion process. A total of 70 strains of filamentous fungi were isolated from three different sources (wastewater, sewage sludge and leachate) of IWK's (Indah Water Konsortium) sewage treatment plant, Malaysia. The isolated strains were purified by conventional techniques and identified by microscopic examination. The strains isolated belonged to the genera of Penicillium, Aspergillus, Trichoderma, Spicaria and Hyaloflorae The distribution of observed isolated fungi were 41% in sewage sludge followed by 39% in wastewater and 20% in leachate. The predominant fungus was Penicillium (39 strains). The second and third most common isolates were Aspergillus (14 strains) and Trichoderma (12 strains). The other isolates were Spicaria (3 strains) and Hyaloflorae (2 strains). Three strains (WWZP1003, LZP3001, LZP3005) of Penicillium (P. corylophilum, P. waksmanii, and P. citrinum respectively), 2 strains (WWZA1006 and SS2017) of Aspergillus (A. terrues and A. flavus respectively) and one strain (SSZT2008) of Trichoderma (T. harzianum) were tentatively identified up to species level and finally verified by CABI Bioscience Identification Services, UK.
  10. Alam MZ, Fakhru'l-Razi A, Molla AH, Roychoudhury PK
    PMID: 11545349
    This study was conducted to evaluate the effect of an eminent decay fungus, Phanerocheate chrysosporium of organic residues on wastewater sludge for its improvement through decomposition and separation of waste particles by Liquid State Bioconversion (LSB). The effect of fungal treatment was compared to uninoculated (Control) at three different harvests 7, 14 and 21 days after inoculation (DAI). The observed results showed that the weight loss and solid content of wastewater sludge were significantly influenced by Phanerocheate chrysosporium. Both parameters were highly influenced at 7 DAI. The COD and pH of wastewater sludge were also highly influenced by fungal treatment.
  11. Molla AH, Fakhru'l-Razi A, Hanafi MM, Abd-Aziz S, Alam MZ
    PMID: 12369641
    Ten filamentous fungi adapted to domestic wastewater sludge (DWS) were further studied to evaluate their potential in terms of adaptation to higher sludge supplemented growing media and phytopathogenicity (induction of diseases to plants) to three germinating crop (Corn: Zea mays, Mung bean: Phaseolus aureus and Mustard: Brassica napus) seeds. The performances of the fungi in seed germination were evaluated based on percent germination index (GI) and infected/spotted seeds on direct fungal biomass (FBM) and fungal metabolite (FM). Significantly the highest biomass production was achieved with RW-P1 512 and Penicillium corylophilum (WW-P1003) at the highest (25%) sludge supplemented growing media that implied its excellent potentiality of adaptation and multiplication to domestic wastewater sludge. Significantly encouraging results of percent GI and spotted/infected seedlings were observed in FM than FBM by all fungi except the strain Aspergillus niger. A. niger gave the poorest percent of GI (24.30, 26.98 and 00.00%) and the highest percent of infected/spotted seeds (70, 100, and 100%) using FBM for corn, mung bean and mustard, respectively. On the other hand, comparatively the highest percent of GI (107.99, 106.25 and 117.67%) and the lowest percent of spotted/infected seedlings (3.3, 3.3 and 3.3%) were achieved with the isolate RW-P1 512 using FM. In FBM, the superior results of percent GI (86.61, 95.92 and 83.87%) and spotted/infected seedlings (3.3, 63.3 and 43.3%) were obtained by A. versicolor. Several crop seeds were responded differently for different fungal treatments. Hundred percent infected/spotted seeds in FM were recorded only for mustard with Trichoderma family that implied its strong sensitiveness to its metabolites.
  12. Molla AH, Fakhru'l-Razi A, Abd-Aziz S, Hanafi MM, Roychoudhury PK, Alam MZ
    Bioresour Technol, 2002 Dec;85(3):263-72.
    PMID: 12365494
    Twenty seven filamentous fungal strains representing five genera; Aspergillus, Penicillium, Trichoderma, Myriodontium and Pleurotus were isolated from four sources; domestic wastewater sludge cake (SC) from IWK (Indah Water Konsortium) wastewater treatment plant, palm oil mill effluent compost from Sri Ulu palm Oil Processing Mill, compost of plant debris, and fungal fruiting bodies from a rotten wood stump. Thirty-three strains/isolates were tested for their ability to convert domestic wastewater sludge into compost by assessing biomass production and growth rate on sludge enriched media. The strains/isolates Aspergillus niger, SS-T2008, WW-P1003 and RW-P1 512 produced the highest dry biomass at higher sludge supplemented culture media from their respective group (Aspergillus, Trichoderma, Penicillium and Basidiomycetes, respectively). This implied these strains are better adapted for growth at higher sludge rich substances, and subsequently may be efficient in bioconversion/biodegradation of sludge. The fungi isolated from ecological closely related sources were more amendable to adaptation in a sludge rich culture media.
  13. Molla AH, Shams H, Harun Z, Kasim ANC, Nallapaneni MK, Rahman MNA
    Sci Rep, 2023 Mar 13;13(1):4169.
    PMID: 36914813 DOI: 10.1038/s41598-023-30964-7
    The growing number of end-of-life vehicles (ELVs) engenders a genuine concern for achieving sustainable development. Properly recycling ELV is paramount to checking pollution, reducing landfills, and conserving natural resources. The present study evaluates the sustainability of India's ELV recycling system from techno-socio-economic and environmental aspects as an instrumental step for assessing performance and progress. This investigation has performed the Strength-Weakness-Opportunity-Threat (SWOT) analysis to evaluate ELV recycling in the long-term viability and examine the critical factors and potential. This research makes practical recommendations for effectively encountering persistent challenges in the ELV recycling system based on Indian values. This research adopts an explorative and Integrated bottom-up mixed approach; it interfaces qualitative and quantitative data and secondary research. This study reveals that the social, economic, technological, and environmental aspects of the sustainability of India's ELV recycling system are comparatively limited. The SWOT analysis demonstrates that potential market size and resource recovery are more significant strengths, whereas lack of an appropriate framework and limited technology are major challenges in the recycling of ELVs in India. Sustainable development and economic viability have emerged as great opportunities, while informality and environmental impact have surfaced as primary potential threats to ELV recycling in India. This paper offers insights and yields critical real-world data that may assist in rational decision-making and developing and implementing any subsequent framework.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links