Displaying all 2 publications

Abstract:
Sort:
  1. Shetty SK, Ismayil, Mohd Noor IS, Yethadka SN, Nayak P
    ACS Omega, 2023 Nov 21;8(46):43632-43643.
    PMID: 38033349 DOI: 10.1021/acsomega.3c05094
    Microstructure modification in sodium alginate (NaAlg)-based solid polymer electrolytes by the perchlorate (ClO4-) and acetate (CH3COO-) anions of sodium salts has been reported. ClO4- participates in the structure-breaking effect via inter/intramolecular hydrogen bond breaking, while CH3COO- changes the amorphous phase, as evident from X-ray diffraction studies. The larger size and negative charge delocalization of ClO4- have a plasticizing effect, resulting in a lower glass transition temperature (Tg) compared to CH3COO-. Decomposition temperature is strongly dependent on the type of anion. Scanning electron microscopy images showed divergent modifications in the surface morphology in both electrolyte systems, with variations in salt content. The mechanical properties of the NaAlg-NaClO4 electrolyte systems are better than those of the NaAlg-CH3 COONa system, indicating weak interactions in the latter. Although most of the studies focus on the cation influence on conductivity, the interaction of the anion and its size certainly have an influence on the properties of solid polymer electrolytes, which will be of interest in the near future for sodium ion-based electrolytes in energy storage devices.
  2. Abu Bakar AA, Zainuddin MZ, Abdullah SM, Tamchek N, Mohd Noor IS, Alauddin MS, et al.
    Polymers (Basel), 2022 Oct 25;14(21).
    PMID: 36365512 DOI: 10.3390/polym14214518
    The integration of additive manufacturing (3D printing) in the biomedical sector required material to portray a holistic characteristic in terms of printability, biocompatibility, degradability, and mechanical properties. This research aims to evaluate the 3D printability and mechanical properties of polyhydroxybutyrate (PHB) as additives in the urethane dimethacrylate (UDMA) based resin and its potential for medical applications. The printability of the PHB/UDMA resin blends was limited to 11 wt.% as it reached the maximum viscosity value at 2188 cP. Two-way analysis of variance (ANOVA) was also conducted to assess the significant effect of the varied PHB (wt.%) incorporation within UDMA resin, and the aging duration of 3D printed PHB/UDMA on mechanical properties in terms of tensile and impact properties. Meanwhile, the increasing crystallinity index (CI) of X-ray diffraction (XRD) in the 3D printed PHB/UDMA as the PHB loading increased, indicating that there is a strong correlation with the lower tensile and impact strength. FESEM images also proved that the agglomerations that occurred within the UDMA matrix had affected the mechanical performance of 3D printed PHB/UDMA. Nonetheless, the thermal stability of the 3D printed PHB/UDMA had only a slight deviation from the 3D printed UDMA since it had better thermal processability.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links