This paper presents two gear driven wind turbine generators (WTG) feeding a single three level grid connected NPC inverter. Each component of WTG is made up of wind turbine, 2-mass gear drive, permanent magnet synchronous generator (PMSG), AC-DC-AC power converter. A simple advanced hill climbs search (AHCS) maximum power point tracking algorithm that uses the mechanical power from the Wind turbine was developed to generate proper duty cycle for the control of single stage DC/DC boost converter. The DC link voltages are series interconnected and fed to a sinusoidal pulse width modulation (SPWM) controlled high power inverter. The complete model is simulated using MATLAB/ SIMULINK software under fixed and fluctuating wind speed conditions. Simulation results have shown that WECs exhibit variability in their output power as a result of changes in their prime movers (wind speed).
This paper presents a real time implementation of the single-phase power factor correction (PFC) AC-DC boost converter. A combination of higher order sliding mode controller based on super twisting algorithm and predictive control techniques are implemented to improve the performance of the boost converter. Due to the chattering effects, the higher order sliding mode control (HOSMC) is designed. Also, the predictive technique is modified taking into account the large computational delays. The robustness of the controller is verified conducting simulation in MATLAB, the results show good performances in both steady and transient states. An experiment is conducted through a test bench based on dSPACE 1104. The experimental results proved that the proposed controller enhanced the performance of the converter under different parameters variations.
This study examines a new approach to selecting the locations of unified power flow controllers (UPFCs) in power system networks based on a dynamic analysis of voltage stability. Power system voltage stability indices (VSIs) including the line stability index (LQP), the voltage collapse proximity indicator (VCPI), and the line stability index (Lmn) are employed to identify the most suitable locations in the system for UPFCs. In this study, the locations of the UPFCs are identified by dynamically varying the loads across all of the load buses to represent actual power system conditions. Simulations were conducted in a power system computer-aided design (PSCAD) software using the IEEE 14-bus and 39- bus benchmark power system models. The simulation results demonstrate the effectiveness of the proposed method. When the UPFCs are placed in the locations obtained with the new approach, the voltage stability improves. A comparison of the steady-state VSIs resulting from the UPFCs placed in the locations obtained with the new approach and with particle swarm optimization (PSO) and differential evolution (DE), which are static methods, is presented. In all cases, the UPFC locations given by the proposed approach result in better voltage stability than those obtained with the other approaches.
The advancement of the Internet of Things (IoT) as a solution in diverse application domains has nurtured the expansion in the number of devices and data volume. Multiple platforms and protocols have been introduced and resulted in high device ubiquity and heterogeneity. However, currently available IoT architectures face challenges to accommodate the diversity in IoT devices or services operating under different operating systems and protocols. In this paper, we propose a new IoT architecture that utilizes the component-based design approach to create and define the loosely-coupled, standalone but interoperable service components for IoT systems. Furthermore, a data-driven feedback function is included as a key feature of the proposed architecture to enable a greater degree of system automation and to reduce the dependency on mankind for data analysis and decision-making. The proposed architecture aims to tackle device interoperability, system reusability and the lack of data-driven functionality issues. Using a real-world use case on a proof-of-concept prototype, we examined the viability and usability of the proposed architecture.
In this paper, the suitability and performance of ANFIS (adaptive neuro-fuzzy inference system), ANFIS-PSO (particle swarm optimization), ANFIS-GA (genetic algorithm) and ANFIS-DE (differential evolution) has been investigated for the prediction of monthly and weekly wind power density (WPD) of four different locations named Mersing, Kuala Terengganu, Pulau Langkawi and Bayan Lepas all in Malaysia. For this aim, standalone ANFIS, ANFIS-PSO, ANFIS-GA and ANFIS-DE prediction algorithm are developed in MATLAB platform. The performance of the proposed hybrid ANFIS models is determined by computing different statistical parameters such as mean absolute bias error (MABE), mean absolute percentage error (MAPE), root mean square error (RMSE) and coefficient of determination (R2). The results obtained from ANFIS-PSO and ANFIS-GA enjoy higher performance and accuracy than other models, and they can be suggested for practical application to predict monthly and weekly mean wind power density. Besides, the capability of the proposed hybrid ANFIS models is examined to predict the wind data for the locations where measured wind data are not available, and the results are compared with the measured wind data from nearby stations.
In this paper, we introduce a new, three-dimensional chaotic system with one stable equilibrium. This system is a multistable dynamic system in which the strange attractor is hidden. We investigate its dynamic properties through equilibrium analysis, a bifurcation diagram and Lyapunov exponents. Such multistable systems are important in engineering. We perform an entropy analysis, parameter estimation and circuit design using this new system to show its feasibility and ability to be used in engineering applications.
Most silicon carbide (SiC) MOSFET models are application-specific. These are already defined by the manufacturers and their parameters are mostly partially accessible due to restrictions. The desired characteristic of any SiC model becomes highly important if an individual wants to visualize the impact of changing intrinsic parameters as well. Also, it requires a model prior knowledge to vary these parameters accordingly. This paper proposes the parameter extraction and its selection for Silicon Carbide (SiC) power N-MOSFET model in a unique way. The extracted parameters are verified through practical implementation with a small-scale high power DC-DC 5 to 2.5 output voltage buck converter using both hardware and software emphasis. The parameters extracted using the proposed method are also tested to verify the static and dynamic characteristics of SiC MOSFET. These parameters include intrinsic, junction and overlapping capacitance. The parameters thus extracted for the SiC MOSFET are analyzed by device performance. This includes input, output transfer characteristics and transient delays under different temperature conditions and loading capabilities. The simulation and experimental results show that the parameters are highly accurate. With its development, researchers will be able to simulate and test any change in intrinsic parameters along with circuit emphasis.
This paper presents a novel, state-of-the-art predictive control architecture that addresses the computational complexity and limitations of conventional predictive control methodologies while enhancing the performance efficacy of predictive control techniques applied to three-level voltage source converters (NPC inverters). This framework's main goal is to decrease the number of filtered voltage lifespan vectors in each sector, which will increase the overall efficiency of the control system and allow for common mode voltage reduction in three-level voltage source converters. Two particular tactics are described in order to accomplish this. First, a statistical approach is presented for the proactive detection of potential voltage vectors, with an emphasis on selecting and including the vectors that are most frequently used. This method lowers the computational load by limiting the search space needed to find the best voltage vectors. Then, using statistical analysis, a plan is presented to split the sectors into two separate parts, so greatly limiting the number of voltage vectors. The goal of this improved predictive control methodology is to reduce computing demands and mitigate common mode voltage. The suggested strategy's resilience is confirmed in a range of operational scenarios using simulations and empirical evaluation. The findings indicate a pronounced enhancement in computational efficiency and a notable diminution in common mode voltage, thereby underscoring the efficacy of the proposed methodology. This increases their ability to incorporate renewable energy sources into the electrical grid.
This research study presents the application of the FC-PCC (Fuzzy Logic Predictive Current Control) algorithm in the context of maximum power point tracking (MPPT) for a proton exchange membrane fuel cell system employing a three-level boost converter (TLBC). The proposed approach involves the integration of an intelligent fuzzy controller with a predictive current control strategy in order to improve the performance of MPP tracking. Initially, the utilization of fuzzy logic involves the utilization of data values obtained from the PEMFC. The maximum point (P-I) of the PEMFC polarization curve is determined, followed by the selection of the reference current. A predictive current control technique employs the reference current to ensure the voltage balance of the output capacitor in the three-level converter. The hardware-in-the-loop system utilizes a real-time and high-speed simulator, specifically the PLECS RT Box 1, to obtain the findings. The computational cost of the overall system is rather low, making it feasible to construct using PLECS RT Box 1. The new MPPT algorithm quickly finds the maximum power point (MPP) and balances the voltage of capacitors in a number of different proton exchange membrane fuel cells. The suggested MPPT technique has been verified to demonstrate rapid tracking of the maximum power point (MPP) location, as well as precise balancing of capacitor voltage and robustness to environmental variations. This approach was tested and found to outperform conventional MPPT methods like Perturb and Observe (P&O) and Incremental Conductance (IC) in terms of tracking duration, precision, and voltage balancing, achieving a 15% reduction in tracking duration, a 5% deviation from the MPP value for voltage, and superior stability under changing temperature and pressure.
This research introduces an advanced finite control set model predictive current control (FCS-MPCC) specifically tailored for three-phase grid-connected inverters, with a primary focus on the suppression of common mode voltage (CMV). CMV is known for causing a range of issues, including leakage currents, electromagnetic interference (EMI), and accelerated system degradation. The proposed control strategy employs a system model that predicts the inverter's future states, enabling the selection of optimal switching states from a finite set to achieve dual objectives: precise current control and effective CMV reduction, a meticulously designed cost function evaluates the potential switching states, balancing the accuracy of current tracking against the necessity to minimize CMV. The approach is grounded in a comprehensive mathematical model that captures the dynamics of CMV within the system, and it utilizes an optimization process that functions in real-time to determine the most suitable control action at each interval, Experimental validations of the proposed FCS-MPCC scheme have demonstrated its effectiveness in significantly improving the performance and durability of three-phase grid-connected inverters, Experimental validations of the proposed (MPC with CMV) scheme have demonstrated its effectiveness in significantly improving the performance and durability of three-phase grid-connected inverters. The proposed method achieved substantial reductions in CMV, notable improvements in current tracking accuracy, and extended system lifespan compared to conventional control methods.