Displaying all 6 publications

Abstract:
Sort:
  1. Giribabu N, Karim K, Kilari EK, Nelli SR, Salleh N
    Inflammopharmacology, 2020 Dec;28(6):1599-1622.
    PMID: 32588370 DOI: 10.1007/s10787-020-00733-3
    Centella asiatica is claimed to have a neuroprotective effect; however, its ability to protect the cerebrum against damage in diabetes has never been identified. The aims were to identify the possibility that C. asiatica ameliorates inflammation, oxidative stress, and apoptosis in the cerebrum in diabetes. C. asiatica leave aqueous extract (C. asiatica) (50, 100, and 200 mg/kg/b.w.) were given to diabetic rats for 28 days. Changes in rats' body weight, food and water intakes, and insulin and FBG levels were monitored. Following sacrificed, cerebrum was harvested and subjected for histological, biochemical, and molecular biological analyses. The results revealed treatment with C. asiatica was able to ameliorate the loss in body weight, the increase in food and water intakes, the decrease in insulin, and the increase in FBG levels in diabetic rats. Additionally, histopathological changes in the cerebrum and levels of p38, ERK, JNK, cytosolic Nrf2, Keap-1, LPO, RAGE, and AGE levels decreased; however, PI3K, AKT, IR, IRS, GLUT-1, nuclear Nrf2, Nqo-1, Ho-1, and anti-oxidative enzymes (SOD, CAT, and GPx) levels increased in diabetic rats receiving C. asiatica. Furthermore, C. asiatica treatment also caused cerebral inflammation and apoptosis to decrease as indicated by decreased inflammatory markers (cytosolic NF-κB p65, p-Ikkβ, Ikkβ, iNOS, COX-2, TNF-α, IL-6, and IL-1β), decreased pro-apoptosis markers (Casp-3, 9, and Bax), but increased anti-apoptosis marker, Bcl-2. Activity level of Na+/K+, Mg2+, and Ca2+-ATPases in the cerebrum also increased by C. asiatica treatment. Conclusions: C. asiatica treatment helps to prevent cerebral damage and maintain near normal cerebral function in diabetes.
  2. Giribabu N, Karim K, Kilari EK, Salleh N
    J Ethnopharmacol, 2017 Jun 09;205:123-137.
    PMID: 28483637 DOI: 10.1016/j.jep.2017.05.002
    ETHNOPHARMACOLOGICAL RELEVANCE: Phylanthus niruri has been used to treat ailments related to the urogenital organs. In this study, this herb was hypothesized to help to ameliorate kidney disease in diabetes mellitus (DM).

    AIMS: To investigate P. niruri leaves aqueous extract (PN) effects on kidney functions, histopathological changes and levels of oxidative stress, inflammation, fibrosis, apoptosis and proliferation in DM.

    METHODS: PN was orally administered to streptozotocin-nicotinamide-induced male diabetic rats for 28 days. At the end of the treatment, fasting blood glucose (FBG) and kidney functions were measured. Kidney somatic index, histopathological changes and levels of RAGE, Nrf2, oxidative stress markers (TBARS, SOD, CAT and GPx), inflammatory markers (NFkβ-p65, Ikk-β, TNF-α, IL-1β and IL-6), apoptosis markers (caspase-3, caspase-9 and Bax), fibrosis markers (TGF-β1, VEGF and FGF-1) and proliferative markers (PCNA and Ki-67) were determined by biochemical assays, qPCR, Western blotting, immunohistochemistry or immunofluorescence.

    RESULTS: Administration of PN helps to maintain near normal FBG, creatinine clearance (CCr), blood urea nitrogen (BUN), BUN/Cr ratio, serum electrolytes, uric acid and urine protein levels in DM. Decreased RAGE, TBARS and increased Nrf2, SOD-1, CAT and GPx-1 were observed in PN-treated diabetic rat kidneys. Expression of inflammatory, fibrosis and apoptosis markers in the kidney reduced but expression of proliferative markers increased following PN treatment. Lesser histopathological changes were observed in the kidney of PN-treated diabetic rats.

    CONCLUSION: PN helps to preserve near normal kidney function and prevents histopathological changes via ameliorating oxidative stress, inflammation, fibrosis and apoptosis while enhancing proliferation of the kidney in DM.

  3. Giribabu N, Karim K, Kilari EK, Kassim NM, Salleh N
    Can J Diabetes, 2018 Apr;42(2):138-149.
    PMID: 28673757 DOI: 10.1016/j.jcjd.2017.04.005
    OBJECTIVES: Consumption of Vitis vinifera seed has been reported to ameliorate liver pathology in diabetes mellitus; however, the mechanisms underlying its effects remain unknown. In this study, the anti-inflammatory, anti-apoptotic and pro-proliferative effects of the ethanolic seed extract of V. vinifera (VVSEE) in the liver in cases of diabetes were identified.

    METHODS: Adult male rats with streptozotocin-nicotinamide-induced diabetes were given 50, 100 or 200 mg/kg body weight VVSEE orally for 28 days. At the end of the treatment, body weights were determined, and the blood was collected for analyses of fasting blood glucose, insulin and liver enzyme levels. Following sacrifice, livers were harvested and their wet weights and glycogen contents were measured. Histologic appearances of the livers were observed under light microscopy, and the expression and distribution of inflammatory, apoptosis and proliferative markers in the livers were identified by molecular biologic techniques.

    RESULTS: Treatment of rats with diabetes by VVSEE attenuates decreased body weight, liver weight and liver glycogen content. Additionally, increases in fasting blood glucose levels and liver enzyme levels and decreases in serum insulin levels were ameliorated. Lesser histopathologic changes were also observed: decreased inflammation and apoptosis, as indicated by decreased levels of inflammatory markers (TNF-α, NF-Kβ, IKK-β, IL-6, IL-1β) and apoptosis markers (caspase-3, caspase-9 and Bax). VVSEE treatment induces increase in hepatocyte regeneration, as indicated by increased PCNA and Ki-67 distribution in the livers of rats with diabetes. Several molecules identified in VVSEE via gas chromatography mass spectrometry might contribute to these effects.

    CONCLUSIONS: The anti-inflammatory, anti-apoptotic and pro-proliferative effects of VVSEE could account for its hepatoprotective actions in diabetes.

  4. Lwin OM, Giribabu N, Kilari EK, Salleh N
    J Dermatolog Treat, 2021 Dec;32(8):1039-1048.
    PMID: 32013660 DOI: 10.1080/09546634.2020.1721419
    PURPOSE: This study identifies the potential use of mangiferin gel to promote wound healing in diabetes mellitus (DM).

    MATERIALS AND METHODS: Male rats were rendered diabetes mellitus via intraperitoneal injection of streptozotocin and nicotinamide. Following diabetes development, wound was created at the back of the neck. 1% and 2% mangiferin gel and 1% silver sulphurdiazine (SS) gel (positive control) were applied to the wound for twenty-one (21) days. Fasting blood glucose (FBG) levels were weekly monitored. At the end of the treatment, rats were sacrificed and wound was excised and subjected for histopathological and molecular biological analysis.

    RESULTS: No changes to serum FBG levels was noted throughout the period of mangiferin treatment. Albeit, a significant decrease in the size of the wound with increased in the skin thickness of surrounding the wound were observed. Increased expression and distribution of EGF, FGF, TGF-β, VEGF, PI3K, MMP and Nrf2 and decreased expression and distribution of TNFα and NF-κB p65 were observed in diabetic wound treated with topical mangiferin.

    CONCLUSIONS: Mangiferin has potential to be used as an agent to promote wound healing in diabetic condition.

  5. Kumar GG, Kilari EK, Nelli G, Bin Salleh N
    J Ethnopharmacol, 2023 Oct 05;314:116638.
    PMID: 37187362 DOI: 10.1016/j.jep.2023.116638
    ETHNOPHARMACOLOGICAL RELEVANCE: Turnera diffusa Willd. ex Schult. (T. diffusa) has traditionally been used to treat male reproductive dysfunction and have aphrodisiac properties.

    AIMS OF THE STUDY: This study aims to investigate the ability of T. diffusa to ameliorate the impairment in testicular steroidogenesis and spermatogenesis in DM that might help to improve testicular function, and subsequently restore male fertility.

    MATERIALS AND METHODS: DM-induced adult male rats were given 100 mg/kg/day and 200 mg/kg/day T. diffusa leaf extract orally for 28 consecutive days. Rats were then sacrificed; sperm and testes were harvested and sperm parameter analysis were performed. Histo-morphological changes in the testes were observed. Biochemical assays were performed to measure testosterone and testicular oxidative stress levels. Immunohistochemistry and double immunofluorescence were used to monitor oxidative stress and inflammation levels in testes as well as Sertoli and steroidogenic marker proteins' expression.

    RESULTS: Treatment with T. diffusa restores sperm count, motility, and viability near normal and reduces sperm morphological abnormalities and sperm DNA fragmentation in diabetic rats. T. diffusa treatment also reduces testicular NOX-2 and lipid peroxidation levels, increases testicular antioxidant enzymes (SOD, CAT, and GPx) activities, ameliorates testicular inflammation via downregulating NF-ΚB, p-Ikkβ and TNF-α and upregulating IκBα expression. In diabetic rats, T. diffusa treatment increases testicular steroidogenic proteins (StAR, CYP11A1, SHBG, and ARA54, 3 and 17β-HSD) and plasma testosterone levels. Furthermore, in diabetic rats treated with T. diffusa, Sertoli cell marker proteins including Connexin 43, N-cadherin, and occludin levels in the testes were elevated.

    CONCLUSION: T. diffusa treatment could help to ameliorate the detrimental effects of DM on the testes, thus this plant has potential to be used to restore male fertility.

  6. Khalil ASM, Giribabu N, Yelumalai S, Shahzad H, Kilari EK, Salleh N
    Life Sci, 2021 Aug 01;278:119605.
    PMID: 33989665 DOI: 10.1016/j.lfs.2021.119605
    Diabetes mellitus (DM) may lead to testicular-related infertility while Myristic acid (MA) is beneficial to lower hyperglycaemia. Thus, we hypothesized that MA could protect testes against hyperglycaemia-induced damage in DM. DM was induced in adult male rats by high-fat diet consumption for 12 weeks, accompanied by a single dose streptozotocin injection. Following DM confirmation, the rats were fed orally with 10 and 20 mg/kg body weight MA for 28 consecutive days. After completion of treatment, rats were sacrificed and blood, cauda epididymis and testes were harvested. Serum was separated, epididymal sperm was collected for analysis. Molecular studies of the testes were performed by qPCR, Western blotting and immunostaining. MA was found to protect the testes against oxidative stress via preventing the upregulation of RAGE, Keap1, and the downregulation of Nrf2, NQO1, HO1, SOD, CAT and GPx. MA also prevented increase in testicular inflammation and apoptosis, as indicated by low inflammatory (NF-κB p65, IKKβ, TNF-α, IL-1β and iNOS) and apoptosis (Bax and caspase-9), but high anti-apoptosis (Bcl-2) markers' levels. Besides, MA prevented the downregulation of testicular steroidogenic markers (3βHSD, 17βHSD, StAR, ARA-54 and CYP11A1). Sperm analysis revealed near normal sperm count, motility, viability, lower abnormal sperm morphology in diabetic rats received MA. MA also prevented the loss of germ cells via preventing the decreased in cell proliferative marker (PCNA) while maintaining near normal epithelial height, tubular and Leydig cell diameters in the testes in DM. MA protects the testes against damage in DM, thus maintaining spermatogenesis and steroidogenesis, consequently preserving male fertility in diabetes.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links