Displaying all 9 publications

Abstract:
Sort:
  1. Islam SS, Faruque MR, Islam MT
    Sci Rep, 2016 09 16;6:33624.
    PMID: 27634456 DOI: 10.1038/srep33624
    A new, metamaterial-based electromagnetic cloaking operation is proposed in this study. The metamaterial exhibits a sharp transmittance in the C-band of the microwave spectrum with negative effective property of permittivity at that frequency. Two metal arms were placed on an FR-4 substrate to construct a double-split-square shape structure. The size of the resonator was maintained to achieve the effective medium property of the metamaterial. Full wave numerical simulation was performed to extract the reflection and transmission coefficients for the unit cell. Later on, a single layer square-shaped cloak was designed using the proposed metamaterial unit cell. The cloak hides a metal cylinder electromagnetically, where the material exhibits epsilon-near-zero (ENZ) property. Cloaking operation was demonstrated adopting the scattering-reduction technique. The measured result was provided to validate the characteristics of the metamaterial and the cloak. Some object size- and shape-based analyses were performed with the cloak, and a common cloaking region was revealed over more than 900 MHz in the C-band for the different objects.
  2. Islam SS, Faruque MRI, Islam MT
    Materials (Basel), 2014 Jul 02;7(7):4994-5011.
    PMID: 28788116 DOI: 10.3390/ma7074994
    This paper presents the design and analysis of a novel split-H-shaped metamaterial unit cell structure that is applicable in a multi-band frequency range and that exhibits negative permeability and permittivity in those frequency bands. In the basic design, the separate split-square resonators are joined by a metal link to form an H-shaped unit structure. Moreover, an analysis and a comparison of the 1 × 1 array and 2 × 2 array structures and the 1 × 1 and 2 × 2 unit cell configurations were performed. All of these configurations demonstrate multi-band operating frequencies (S-band, C-band, X-band and Ku-band) with double-negative characteristics. The equivalent circuit model and measured result for each unit cell are presented to validate the resonant behavior. The commercially available finite-difference time-domain (FDTD)-based simulation software, Computer Simulation Technology (CST) Microwave Studio, was used to obtain the reflection and transmission parameters of each unit cell. This is a novel and promising design in the electromagnetic paradigm for its simplicity, scalability, double-negative characteristics and multi-band operation.
  3. Islam SS, Faruque MRI, Islam MT
    Materials (Basel), 2015 Jul 29;8(8):4790-4804.
    PMID: 28793472 DOI: 10.3390/ma8084790
    The paper reveals the design of a unit cell of a metamaterial that shows more than 2 GHz wideband near zero refractive index (NZRI) property in the C-band region of microwave spectra. The two arms of the unit cell were splitted in such a way that forms a near-pi-shape structure on epoxy resin fiber (FR-4) substrate material. The reflection and transmission characteristics of the unit cell were achieved by utilizing finite integration technique based simulation software. Measured results were presented, which complied well with simulated results. The unit cell was then applied to build a single layer rectangular-shaped cloak that operates in the C-band region where a metal cylinder was perfectly hidden electromagnetically by reducing the scattering width below zero. Moreover, the unit cell shows NZRI property there. The experimental result for the cloak operation was presented in terms of S-parameters as well. In addition, the same metamaterial shell was also adopted for designing an eye-shaped and triangular-shaped cloak structure to cloak the same object, and cloaking operation is achieved in the C-band, as well with slightly better cloaking performance. The novel design, NZRI property, and single layer C-band cloaking operation has made the design a promising one in the electromagnetic paradigm.
  4. Hasan MM, Faruque MRI, Islam SS, Islam MT
    Materials (Basel), 2016 Oct 13;9(10).
    PMID: 28773951 DOI: 10.3390/ma9100830
    The aim of this paper is to introduce a compact double-negative (DNG) metamaterial that exhibits a negative refractive index (NRI) bandwidth of more than 3.6 GHz considering the frequency from 2 to 14 GHz. In this framework, two arms of the designed unit cell are split in a way that forms a Modified-Z-shape structure of the FR-4 substrate material. The finite integration technique (FIT)-based Computer Simulation Technology (CST) Microwave Studio is applied for computation, and the experimental setup for measuring the performance is performed inside two waveguide ports. Therefore, the measured data complies well with the simulated data of the unit cell at 0-degree and 90-degree rotation angles. The designed unit cell shows a negative refractive index from 3.482 to 7.096 GHz (bandwidth of 3.61 GHz), 7.876 to 10.047 GHz (bandwidth of 2.171 GHz), and 11.594 to 14 GHz (bandwidth of 2.406 GHz) in the microwave spectra. The design also exhibits almost the same wide negative refractive index bandwidth in the major region of the C-band and X-band if it is rotated 90 degrees. However, the novelty of the proposed structure lies in its effective medium ratio of more than 4, wide bandwidth, and compact size.
  5. Hossain MB, Faruque MRI, Islam SS, Islam MT
    Sci Rep, 2021 Sep 29;11(1):19331.
    PMID: 34588523 DOI: 10.1038/s41598-021-98703-4
    Metamaterial with negative permittivity demonstrate excellent performance in cutting-edge technology. Thus, this study modified the double dumbbell-shaped split-ring resonator (MDD-SRR) based negative permittivity for satellite communications. The proposed MDD-SRR unit cell comprises a square-shaped split-ring resonator and two dumbbell-shaped rings. Some parts of the outer square ring were extended to enlarge the electrical length which altered the inductance of the metamaterial unit cell. The dimension of the proposed unit cell is 9 × 9 × 1.524 mm3, fabricated on a Rogers RT6002 (lossy) substrate material. Based on the results, five resonances for the transmission coefficient were achieved at frequencies of 2.896 GHz, 8.11 GHz, 9.76 GHz, 12.48 GHz and 13.49 GHz, including the S, X and Ku band satellite communication frequency bands through numerical simulation in a high-frequency electromagnetic simulator Computer Simulation Technology (CST) microwave studio. Negative permittivity at frequencies ranging from 2.896-3.76 GHz, 8.11-8.592 GHz, 9.76-10.784 GHz, 12.496-12.768 GHz, 13.504-14.4 GHz, were observed and extracted using the Robust and Nicolson-Ross-Weir (NRW) methods. Meanwhile, an effective medium ratio (EMR) measured at 11.51 to 2.896 GHz specified the goodness of the metamaterial unit cell for satellite communication with higher bandwidth and gain. The simulated, circuit model and measured results that were compared for validation purposes indicated that the simulation results, the equivalent circuit model results and measured results occupied each other. Moreover, the numerical simulation of the double dumbbell-shaped metamaterial unit cell was performed using a High-Frequency Structure Simulator (HFSS) to confirm the results. To evaluate the parametric study, the proposed unit cell was subjected to change different substrate types, change of split gap of rings, change of direction of electromagnetic field propagation, and structural optimization. In conclusion, the S, X and Ku-bands in the proposed metamaterial are competent for satellite communications as they are also investigated using an array of a unit cell.
  6. Ahmad H, Umar K, Ali SG, Singh P, Islam SS, Khan HM
    Mikrochim Acta, 2018 05 10;185(6):290.
    PMID: 29748777 DOI: 10.1007/s00604-018-2829-z
    A column sorbent for arsenic was obtained through immobilization of highly branched polyethylenimine (PEI) on graphene oxide (GO). The composite material enables speciation of arsenic by tuning the pH of the sample solution which governs the surface charge of the sorbent, depending on whether amino groups (-NH2) are present (at high pH) or ammonium groups (-NH3+; at low pH). The composite can be applied to improved speciation of arsenic (compared to unmodified GO). There is no need for oxidation or reduction of arsenic. A column procedure was applied for the sequestered extraction and speciation of As(III) and As(V) from environmental water samples before their determination by hydride generation-microwave induced plasma-atomic emission spectrometry. The method has a preconcentration factor of 440 for As(III) and of 400 for As(V). The limits of detection (at 3 S/N) are extremely low, being 1.8 ± 0.2 ngL-1 for As(III) and 1.3 ± 0.08 ngL-1 for As(V). This is much lower than the arsenic guideline value of 10 μgL-1 as given by the WHO. Graphical abstract Graphene oxide interconnected with polyethyleneimine has been employed for the speciation and determination of arsenic. Quantitation by atomic emission spectroscopy reveals a high preconcentration factor (440 and 400) and low LODs of 1.8 ± 0.2 and 1.3 ± 0.08 ngL-1for As(III) and As(V), respectively.
  7. Alam A, Islam SS, Islam MH, Almutairi AF, Islam MT
    Materials (Basel), 2020 Jun 04;13(11).
    PMID: 32512784 DOI: 10.3390/ma13112560
    This paper presents an ultra-wideband metamaterial absorber for solar harvesting in the infrared regime (220-360 THz) of the solar spectrum. The proposed absorber consists of square-shaped copper patches of different sizes imposed on a GaAs (Gallium arsenide) substrate. The design and simulation of the unit cell are performed with finite integration technique (FIT)-based simulation software. Scattering parameters are retrieved during the simulation process. The constructed design offers absorbance above 90% within a 37.89% relative bandwidth and 99.99% absorption over a vast portion of the investigated frequency range. An equivalent circuit model is presented to endorse the validity of the proposed structure. The calculated result strongly agrees with the simulated result. Symmetrical construction of the proposed unit cell reports an angular insensitivity up to a 35° oblique incidence. Post-processed simulation data confirm that the design is polarization-insensitive.
  8. Kalidas NR, Saminathan M, Ismail IS, Abas F, Maity P, Islam SS, et al.
    Food Chem, 2017 Nov 01;234:348-355.
    PMID: 28551246 DOI: 10.1016/j.foodchem.2017.04.159
    In this study, mannanoligosaccharides (MOS) were isolated from palm kernel cake by aqueous extraction using high temperature and pressure. Structural characterization of MOS was carried out using acid hydrolysis, methylation analysis, ESI-MS/MS and 1D/2D NMR. The prebiotic activity of MOS was evaluated in vitro using two probiotic Lactobacillus strains. Sugar analysis indicated the presence of mannose in each of the oligomers. Methylation and 1D/2D NMR analysis indicated that the MOS have a linear structure consisting of (1→4)-β-d-mannopyranosyl residues. ESI-MS/MS results showed that the isolated mannan oligomers, MOS-III, MOS-IV, MOS-V and MOS-VI consist of tetra-, penta-, hexa-, and hepta-saccharides with molecular weights of 689, 851, 1013 and 1151Da, respectively. Based on the in vitro growth study, MOS-III and MOS-IV was found to be effective in selectively promoting the growth of Lactobacillus reuteri C1 strain as evidenced by the optical density of the culture broth.
  9. Lee JK, Mitchell PJ, Ang SB, Mercado-Asis LB, Rey-Matias R, Li J, et al.
    Arch Osteoporos, 2024 Apr 02;19(1):24.
    PMID: 38565791 DOI: 10.1007/s11657-024-01375-6
    A survey of awareness and attitudes to the management of fragility fractures among the membership of the Asia Pacific Orthopaedic Association conducted in 2022 found considerable variation in care across the region. A Call to Action is proposed to improve acute care, rehabilitation and secondary fracture prevention across Asia Pacific.

    PURPOSE: Fragility fractures impose a substantial burden on older people and their families, healthcare systems and national economies. The current incidence of hip and other fragility fractures across the Asia Pacific region is enormous and set to escalate rapidly in the coming decades. This publication describes findings of a survey of awareness and attitudes to the management of fragility fractures among the membership of the Asia Pacific Orthopaedic Association (APOA) conducted in 2022.

    METHODS: The survey was developed as a collaboration between the Asia Pacific Osteoporosis and Fragility Fracture Society and the Asia Pacific Fragility Fracture Alliance, and included questions relating to aspects of care upon presentation, during surgery and mobilisation, secondary fracture prevention, and access to specific services.

    RESULTS: In total, 521 APOA members completed the survey and marked variation in delivery of care was evident. Notable findings included: Fifty-nine percent of respondents indicated that analgesia was routinely initiated in transit (by paramedics) or within 30 minutes of arrival in the Emergency Department. One-quarter of respondents stated that more than 80% of their patients underwent surgery within 48 hours of admission. One-third of respondents considered non-hip, non-vertebral fractures to merit assessment of future fracture risk. One-third of respondents reported the presence of an Orthogeriatric Service in their hospital, and less than a quarter reported the presence of a Fracture Liaison Service.

    CONCLUSION: A Call to Action for all National Orthopaedic Associations affiliated with APOA is proposed to improve the care of fragility fracture patients across the region.

Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links