Patches has recently emerged and attracting more attention for its versatility in many areas such as cosmetic, pharmaceutical and medical. Patches can either be used to administer selected drug to skin or deliver some beneficial ingredients for cosmetic purposes. With that, as polymer is used as the matrix for patches, the polymer selected must be non-toxic, have adhesive property and non-irritative to the skin. Currently, synthetic polymer had been used as the matrix. However, as time passes, people are more concern with the environment, therefore biopolymer is chosen over synthetic polymer as they are degradable and also safe to use. Nowadays, as consumers are demanding for a more effective product that is not only good for appearance but also the health of the skin, studies had been done on many kinds of active ingredient that will give the best effect to the skin. Thus in this paper, patches made up of different combinations of polymer and active ingredients, as well as fabrication method currently used to produce patches will be discussed.
The concern about our dependency on non-renewable resources and overwhelming environmental issues such as pollution caused by non-degradable packaging materials has prompted researchers to come up with alternatives to solve this problem. Thermoplastic polylactic acid (PLA) has been gaining interest due to its versatility and easy processability, thus this study was carried out to find out the properties of PLA reinforced with pineapple fibers. However, surface of the natural fibers need to be treated for better properties enhancement in the polymer matrices. Considering this, fibers were treated with 10% (w/v) concentration of potassium hydroxide (KOH) and then continued for mixing with PLA at a fixed ratio of plasticizer by using internal mixer, and then the composites were prepared into sheet via hot press. Characterization for the mechanical and morphological was conducted by using tensile testing and scanning electron microscopy, respectively. After the analysis, it is found that the surface treated pineapple fiber composite showed better elongation at break compared to untreated fiber composite. The enhance properties of PLA nanocomposites has potential to be used in various packaging materials.